
ISO/IEC JTC1/SC22/WG5 N2161

The new features of Fortran 2018

John Reid

August 2, 2018

Abstract

The aim of this paper is to summarize the new features of the Fortran standard that
is expected to be published in 2018. It was known informally as Fortran 2015 because the
choice of features to include was made in 2015, but WG5 has decided to rename it Fortran
2018 to reflect the date of publication. We take as our starting point Fortran 2008 (ISO/IEC
2010).

This paper is a revision of N2145 and supersedes it. It takes account of the changes made
at the 2018 meeting of WG5.

Two official extensions have been published as Technical Specifications. ISO/IEC (2012)
specifies further features for interoperability of Fortran with C and ISO/IEC (2015) specifies
additional parallel features. WG5 committed itself to include both of these in Fortran 2018.
The introduction of a new IEEE standard for floating-point arithmetic (ISO/IEC/IEEE
2011) necessitated changes to the IEEE modules. Beyond these features, WG5 decided to
limit changes to the removal of deficiencies and discrepancies, which by definition are all
small.

For an informal description of Fortran 2008, see Metcalf, Reid and Cohen (2011).

NB This article is not an official document and has not been
approved by WG5 or PL22.3 (formerly J3).

1

2 CONTENTS

Contents

1 Introduction 5

2 Further interoperability of Fortran with C 6

2.1 C descriptors . 6

2.2 Attribute codes . 7

2.3 The type CFI dim t . 7

2.4 Type codes . 7

2.5 Other constants . 7

2.6 Memory for a C descriptor . 8

2.7 C functions declared in ISO Fortran binding.h 9

2.7.1 Introduction . 9

2.7.2 Establishing a C descriptor . 10

2.7.3 Fortran allocation and deallocation . 11

2.7.4 Array sections . 12

2.7.5 Fortran subscripting . 13

2.7.6 Testing for contiguity . 14

2.7.7 Error codes . 14

2.8 Interoperability of procedures . 15

2.9 Lifetimes . 15

2.10 Interoperability with the C type ptrdiff t . 16

2.11 Changes to procedures in the iso c binding module 16

2.12 Assumed rank . 16

2.12.1 Assumed-rank objects . 16

2.12.2 The select rank construct . 17

2.12.3 Assumed-size arrays . 18

2.13 Assumed type . 18

2.14 Allocatable dummy arguments of intent out . 19

2.15 Contiguous attribute . 20

2.16 Optional arguments . 20

CONTENTS 3

2.17 Asynchronous communication . 20

3 Additional parallel features in Fortran 21

3.1 Teams . 21

3.2 Image failure . 22

3.3 Form team statement . 22

3.4 Change team construct . 23

3.5 Coarrays allocated in teams . 24

3.6 Critical construct . 24

3.7 Lock and unlock statements . 24

3.8 Events . 25

3.9 Sync team statement . 26

3.10 Image selectors . 26

3.11 Procedure calls and teams . 27

3.12 Intrinsic functions get team and team number . 27

3.13 Intrinsic function image index . 28

3.14 Intrinsic function num images . 29

3.15 Intrinsic function this image . 29

3.16 Intrinsic function move alloc . 29

3.17 Fail image statement . 30

3.18 Detecting failed and stopped images . 30

3.19 Collective subroutines . 31

3.20 New and enhanced atomic subroutines . 33

3.21 Failed images and stat= specifiers . 34

4 Conformance with ISO/IEC/IEEE 60559:2011 34

4.1 Subnormal values . 34

4.2 Type for floating-point modes . 35

4.3 Rounding modes . 35

4.4 Rounded conversions . 35

4.5 Fused multiply-add . 36

4 CONTENTS

4.6 Test sign . 36

4.7 Conversion to integer type . 36

4.8 Remainder function . 36

4.9 Maximum and minimum values . 36

4.10 Adjacent machine numbers . 37

4.11 Comparisons . 37

5 Features that address deficiencies and discrepancies 38

5.1 Default accessibility for entities accessed from a module 38

5.2 Implicit none enhancement . 39

5.3 Referencing a property of an object in a constant expression 39

5.4 Enhancements to inquire . 39

5.5 d0.d, e0.d, es0.d, en0.d, g0.d and ew.d e0 edit descriptors 39

5.6 Formatted input error conditions . 40

5.7 Rules for generic procedures . 40

5.8 Enhancements to stop and error stop . 40

5.9 Intrinsics that access the computing environment 40

5.10 New elemental intrinsic function out of range 41

5.11 New reduction intrinsic reduce . 41

5.12 Intrinsic functions image index, lcobound, ucobound, and this image 42

5.13 Intrinsic function coshape . 43

5.14 Intrinsic subroutine random init . 43

5.15 Intrinsic function sign . 44

5.16 Intrinsic functions extends type of and same type as 44

5.17 Detecting nonstandard intrinsics . 44

5.18 Kind of the do variable in implied do . 44

5.19 Locality clauses in do concurrent . 44

5.20 Control of host association . 45

5.21 Connect a file to more than one unit . 46

5.22 Advancing input with size= . 46

5.23 Extension to the generic statement . 46

5

5.24 The value attribute for an argument of a defined operation or assignment 47

5.25 Removal of anomalies regarding pure procedures 47

5.26 Recursive and non-recursive procedures . 47

5.27 Simplification of calls of the intrinsic cmplx . 47

5.28 Removal of the restriction on argument dim of many intrinsic functions 48

5.29 Kinds of arguments of intrinsic and IEEE procedures 48

5.30 Hexadecimal input/output . 49

5.31 Precision of stat= variables . 49

5.32 Deletions . 49

5.32.1 Arithmetic if statement . 49

5.32.2 Nonblock do construct . 50

5.33 New obsolescences . 50

5.33.1 common and equivalence . 50

5.33.2 Labelled do statements . 50

5.33.3 Specific names for standard intrinsic functions 50

5.33.4 The forall construct and statement . 50

6 Acknowledgements 50

1 Introduction

Fortran is a computer language for scientific and technical programming that is tailored for
efficient run-time execution on a wide variety of processors. It was first standardized in 1966
and the standard has since been revised five times (1978, 1991, 1997, 2004, 2010). The revisions
alternated between being minor (1978, 1997, and 2010) and major (1991 and 2004). Features for
further interoperability have been defined in a Technical Specification (ISO/IEC TS 29113:2012)
and for further coarray features in another Technical Specification (ISO/IEC TS 18508:2015).

We use the convention of indicating the optional arguments of a procedure by enclosing them
in square brackets in the argument list. We also use square brackets for other optional syntax.

6 2 FURTHER INTEROPERABILITY OF FORTRAN WITH C

2 Further interoperability of Fortran with C

2.1 C descriptors

Fortran 2008 provides for interoperability of procedures with nonoptional dummy arguments
that are scalars, explicit-shape arrays, or assumed-size arrays, but not with dummy arguments
that are assumed shape, assumed character length, allocatable, or pointers. This deficiency is
circumvented by the Fortran processor passing to the C function the address of a standardized
descriptor, known as a C descriptor, of the object instead of the object itself. This allows
the C function to work with the object because it has access to all its properties. It is not
permitted to use this knowledge to access memory outwith the object via a pointer based on the
base address of the object. The source file ISO Fortran binding.h, whose contents will vary
between vendors, provides definitions and prototypes that enable a C function to do this.

A C descriptor is a C structure of the type CFI cdesc t. This type has members that are
required to include the following:

void * base addr C address of the object if it is scalar or of the first array element if it is an
array. If the object is an unallocated allocatable variable or a pointer that is disassociated,
the value is a null pointer. If the object has zero size, the value is not a null pointer but
is otherwise processor dependent.

size t elem len The storage size in bytes of the object if it is scalar or of an array element if
it is an array.

int version The version number of the descriptor. It is the value of CFI VERSION in the file
ISO Fortran binding.h that defined the format and meaning of this C descriptor.

CFI rank t rank Rank of the object if it is an array or 0 if it is scalar. CFI rank t is a typedef
name for a standard signed integer type capable of representing the largest supported rank.

CFI type t type Code for the type of the object. CFI type t is a typedef name for a standard
signed integer type capable of representing the values for the supported type codes. For
details, see Section 2.4.

CFI attribute t attribute Code to indicate whether the object is allocatable, a pointer, or
neither. For details, see Section 2.2.

CFI dim t dim If the object is an array, this is an array of size its rank and holding its lower
bounds, extents, and strides. For details, see Section 2.3.

The first three members are always at the beginning and ordered as in this list. The dim member
is always at the end. The remainder, including any vendor-specific additional members, may be
in any order.

2.2 Attribute codes 7

2.2 Attribute codes

The macros in Table 1 provide attribute codes. They are nonnegative and have distinct integer
values.

CFI attribute t is a typedef name for a standard signed integer type capable of representing
the values for the supported attribute codes.

Table 1: Macros for attribute codes
Macro name Attribute

CFI attribute pointer data pointer
CFI attribute allocatable allocatable
CFI attribute other nonallocatable nonpointer

2.3 The type CFI dim t

The type CFI dim t has members that are required to include the following:

CFI index t lower bound Lower bound of a dimension of an array. For an array pointer or
allocatable array, the value is determined by argument association, allocation, or pointer
association. For a nonallocatable nonpointer array, the value is zero.

CFI index t extent Number of elements in the dimension or -1 for the final dimension of an
assumed-size array.

CFI index t sm Stride in memory, that is, the difference in bytes between the addresses of
successive elements in the dimension.

where CFI index t is a typedef name for a standard signed integer type capable of representing
a memory address difference in bytes.

2.4 Type codes

The macros in Table 2 provide integer type codes. The value for CFI type other is negative
and distinct from the others. CFI type struct specifies a C structure that is interoperable with
a Fortran derived type; its value is positive and distinct from all other type codes. The value
for a C type that is not interoperable with a Fortran type and kind supported by the Fortran
processor is negative. Otherwise, the value for an intrinsic type is positive.

2.5 Other constants

The macro CFI MAX RANK provides an integer constant whose value is the largest rank supported,
which must be at least 15.

8 2 FURTHER INTEROPERABILITY OF FORTRAN WITH C

The macro CFI VERSION provides an integer constant whose value encodes the version of the
header ISO Fortran binding.h in use.

Table 2: Macros for type codes

Macro name C type
CFI type signed char signed char

CFI type short short int

CFI type int int

CFI type long long int

CFI type long long long long int

CFI type size t size t

CFI type int8 t int8 t

CFI type int16 t int16 t

CFI type int32 t int32 t

CFI type int64 t int64 t

CFI type int least8 t int least8 t

CFI type int least16 t int least16 t

CFI type int least32 t int least32 t

CFI type int least64 t int least64 t

CFI type int fast8 t int fast8 t

CFI type int fast16 t int fast16 t

CFI type int fast32 t int fast32 t

CFI type int fast64 t int fast64 t

CFI type intmax t intmax t

CFI type intptr t intptr t

CFI type ptrdiff t ptrdiff t

CFI type float float

CFI type double double

CFI type long double long double

CFI type float Complex float Complex

CFI type double Complex double Complex

CFI type long double Complex long double Complex

CFI type Bool Bool

CFI type char char

CFI type cptr void *

CFI type struct interoperable C structure
CFI type other Not otherwise specified

2.6 Memory for a C descriptor

CFI CDESC T is a function-like macro that takes one argument and evaluates to an unqualified
type of suitable size and alignment for a variable holding a C descriptor. The argument is an
integer constant expression specifying the rank of the object to be described. A pointer to a
variable declared using CFI CDESC T can be cast to CFI cdesc t *, for example

2.7 C functions declared in ISO Fortran binding.h 9

CFI_CDESC_T(5) object;

CFI_cdesc_t * dv = (CFI_cdesc_t *)&object;

int ind;

ind = CFI_establish(dv, ...);

/* CFI_establish explained in Section 2.7.2. */

2.7 C functions declared in ISO Fortran binding.h

2.7.1 Introduction

In this section, we give details of functions that are provided for the C programmer to

• Establish a C descriptor for a nonallocatable nonpointer data object of known shape, an
unallocated allocatable object, or a data pointer.

• Allocate or deallocate an allocatable or pointer object using the Fortran mechanism.

• Update a C descriptor to describe an array section.

• Compute a C address as if by Fortran subscripting.

• Test an array for contiguity.

A C descriptor must not be initialized, updated, or copied except by calling one of these func-
tions.

If the address of a C descriptor is a formal parameter that corresponds to a Fortran actual
argument or a C actual argument that corresponds to a Fortran dummy argument,

• the C descriptor must not be modified if either the corresponding dummy argument in
the Fortran interface has intent in or the C descriptor is for a nonallocatable nonpointer
object, and

• the base addr member of the C descriptor must not be accessed before it is given a value
if the corresponding dummy argument in the Fortran interface is a pointer and has intent
out.

If the address of a C descriptor is a C actual argument that corresponds to an assumed-shape
Fortran dummy argument, that descriptor shall not be for an assumed-size array.

Most of the functions return an integer error code. The meanings of these codes are tabulated
in Section 2.7.7.

10 2 FURTHER INTEROPERABILITY OF FORTRAN WITH C

2.7.2 Establishing a C descriptor

int CFI_establish(CFI_cdesc_t *dv, void *base_addr,

CFI_attribute_t attribute, CFI_type_t type, size_t elem_len,

CFI_rank_t rank, const CFI_index_t extents[]);

updates the object with the address dv to be

• an established C descriptor for a nonallocatable nonpointer data object that
is a scalar or a contiguous array, an unallocated allocatable object, or a data
pointer; or

• a C descriptor with the attribute CFI attribute other that is suitable for
argument result of one of the functions of Section 2.7.4 when it is desired to
construct a C descriptor for a nonallocatable nonpointer array section.

The function return value is an error indicator.

dv is the address of a data object that is large enough to hold a C descriptor of
the rank specified by rank. It must not be the address of a C descriptor that
is a formal parameter that corresponds to a Fortran actual argument or a C
actual argument that corresponds to a Fortran dummy argument. It must not
be the address of a C descriptor for an allocated allocatable object. If an error
is detected, the data object is not modified.

base addr is a null pointer or the address of a contiguous storage sequence that is
appropriately aligned for an object of the type specified by argument type. If
it is the address of a Fortran data object, the type and elem len arguments
must be consistent with the type and type parameters of the Fortran data
object. If it is a null pointer, the aim is to establish a C descriptor for an
unallocated allocatable object, a disassociated pointer, or a C descriptor that
has the attribute CFI attribute other and can later be associated with a data
object.

attribute must be one of the attribute codes in Table 1. If it is
CFI attribute allocatable, base addr must be a null pointer.

type must be one of the type codes in Table 2 or the type code of an interoperable
C type.

element len is ignored unless type is equal to CFI type struct, CFI type other,
or a Fortran character type code, in which case element len must be greater
than zero and equal to the storage size in bytes of an element of the object.

rank specifies the desired rank.

extents is ignored if rank is zero or base addr is a null pointer. Otherwise, it is
the address of an array specifying the desired extents. For a pointer, any lower
bounds are set to zero.

2.7 C functions declared in ISO Fortran binding.h 11

int CFI_setpointer(CFI_cdesc_t *result, CFI_cdesc_t *source,

const CFI_index_t lower_bounds[]);

updates a C descriptor for a Fortran pointer to be associated with the whole of a
given object or to be disassociated. The function return value is an error indicator.

result is the address of a C descriptor for a Fortran pointer. If source is a
null pointer or the address of a C descriptor for a disassociated pointer, the
C descriptor is updated to describe a disassociated pointer. Otherwise, the
base addr member is updated to that of the C descriptor whose address is
source and, unless the lower bounds argument is a null pointer, its lower
bounds are replaced by the values of the first source->rank elements of
lower bounds.

source is a null pointer or the address of a C descriptor for an allocated allocatable
object, a data pointer object, or a nonallocatable nonpointer data object that
is not an assumed-size array. If source is not a null pointer, the values of its
elem len, rank, and type members must be the same as in the C descriptor
with the address result.

lower bounds Unless source is a null pointer or source->rank is zero,
lower bounds is the address of an array with at least source->rank elements.

2.7.3 Fortran allocation and deallocation

Within a C function, an allocatable object may be allocated or deallocated only by execution
of the two functions of this section. A Fortran pointer can become associated with a target by
execution of the CFI allocate function.

int CFI_allocate(CFI_cdesc_t *dv, const CFI_index_t lower_bounds[],

const CFI_index_t upper_bounds[], size_t elem_len);

allocates memory for the object described by a C descriptor using the Fortran
allocate mechanism. The function return value is an error indicator.

dv is the address of a C descriptor for the object. The base addr member of the
C descriptor must be a null pointer. If the type is not a character type, the
elem len member specifies the element length. The attribute member must
have the value of CFI attribute allocatable or CFI attribute pointer. If
an error is detected, the C descriptor is not modified.

lower bounds is the address of an array holding the desired lower bounds.

upper bounds is the address of an array holding the desired upper bounds.

elem len is the desired storage size in bytes of an element of the object if the type
specified in the C descriptor is a Fortran character type; otherwise, elem len

is ignored.

12 2 FURTHER INTEROPERABILITY OF FORTRAN WITH C

int CFI_deallocate(CFI_cdesc_t *dv);

deallocates memory for the object described by a C descriptor using the Fortran
deallocate mechanism. The function return value is an error indicator.

dv is the address of a C descriptor for the object. It must have been allocated
using the Fortran allocate mechanism. If the object is a pointer, it must be
associated with a target satisfying the conditions for successful deallocation by
the Fortran deallocate statement. If an error is detected, the C descriptor is
not modified.

2.7.4 Array sections

int CFI_section(CFI_cdesc_t *result, const CFI_cdesc_t *source,

const CFI_index_t lower_bounds[],

const CFI_index_t upper_bounds[], const CFI_index_t strides[]);

constructs a C descriptor for an array section of a given array. The section is specified
by the arguments lower bounds, upper bounds, and strides just as by the section
notation in Fortran except that a stride value may be zero, in which case the lower
bound (or its default) specifies a subscript rather than a section subscript and the
upper bound (or its default) must have the same value. The function return value
is an error indicator.

result is the address of a C descriptor with attribute member having
value CFI attribute other or CFI attribute pointer. This must be
CFI attribute pointer if the address is of a C descriptor that is a formal pa-
rameter that corresponds to a Fortran actual argument or a C actual argument
that corresponds to a Fortran dummy argument. Successful execution updates
the base addr and dim members of the C descriptor to describe the array sec-
tion of the array described by source that is determined by lower bounds,
upper bounds, and strides. If an error is detected, the C descriptor is not
modified.

source is the address of a C descriptor that describes a nonallocatable nonpointer ar-
ray, an allocated allocatable array, or an associated array pointer. The elem len

and type members shall have the same values as the corresponding members
of result.

lower bounds is the address of an array with at least source->rank elements that
specifies the lower bounds of the section or is a null pointer specifying default
lower bounds (those of the source C descriptor).

upper bounds is the address of an array with at least source->rank elements that
specifies the upper bounds of the section or is a null pointer specifying default
upper bounds (those of the source C descriptor).

2.7 C functions declared in ISO Fortran binding.h 13

strides is the address of an array with at least source->rank elements that specifies
the strides of the section or is a null pointer specifying default strides of 1.

int CFI_select_part(CFI_cdesc_t *result, const CFI_cdesc_t *source,

size_t displacement, size_t elem_len);

constructs a C descriptor for an array section for which each element is a part of
the corresponding element of a given array. The part has type result->type and is
specified by displacement. It must be a component of a structure, a substring, or
the real or imaginary part of a complex value. The function return value is an error
indicator.

result is the address of a C descriptor with attribute member having
value CFI attribute other or CFI attribute pointer. This must be
CFI attribute pointer if the address is of a C descriptor that is a formal
parameter that corresponds to a Fortran actual argument or a C actual argu-
ment that corresponds to a Fortran dummy argument. Successful execution
updates the base addr, dim, and elem len members of the C descriptor to de-
scribe the array section of the array described by source that is determined by
result->type and displacement. If an error is detected, the C descriptor is
not modified.

source is the address of a C descriptor that describes an allocated allocatable array,
an associated array pointer or a nonallocatable nonpointer array that is not an
assumed-size array.

displacement specifies the displacement in bytes of an element of the section from
the corresponding element of the array and must be appropriately aligned for
an object of the type result->type.

elem len has a value equal to the storage size in bytes of an element of the array
section if result->type specifies a Fortran character type; otherwise, elem len

is ignored.

2.7.5 Fortran subscripting

void *CFI_address(const CFI_cdesc_t *dv, const CFI_index_t subscripts[]);

returns the C address of a scalar or of an element of an array using Fortran sub-
scripting.

dv is the address of a C descriptor for the object. The object must not be an
unallocated allocatable variable or a pointer that is not associated.

subscripts is a null pointer or the address of an array. If the object is an array,
subscripts must be the address of an array with at least as many elements as
the rank of the object. The value of subscripts[i] must be within the bounds

14 2 FURTHER INTEROPERABILITY OF FORTRAN WITH C

of dimension i as specified by the dim member of the C descriptor, except for
the final dimension of an assumed-size array. For an assumed-size array, the
subscript order value specified by the subscripts must not exceed the size of the
array.

2.7.6 Testing for contiguity

int CFI_is_contiguous(const CFI_cdesc_t * dv);

returns 1 if the array described by dv is contiguous, and 0 otherwise.

dv is the address of a C descriptor for an array. The base addr member of the C
descriptor must not be a null pointer.

2.7.7 Error codes

The macros in Table 3 are used as error codes. The macro CFI SUCCESS is the integer constant
0. The value of each other macro is nonzero and different from the others in this table. Error
conditions other than those listed are indicated by error codes different from the values in this
table.

Table 3: Macros for error codes
Macro name Meaning

CFI SUCCESS No error detected.
CFI ERROR BASE ADDR NULL The base address member of a C descriptor is a null pointer

in a context that requires a non-null pointer value.
CFI ERROR BASE ADDR NOT NULL The base address member of a C descriptor is not a null

pointer in a context that requires a null pointer value.
CFI INVALID ELEM LEN The value supplied for the element length member of a

C descriptor is not valid.
CFI INVALID RANK The value supplied for the rank member of a C descriptor

is not valid.
CFI INVALID TYPE The value supplied for the type member of a C descriptor

is not valid.
CFI INVALID ATTRIBUTE The value supplied for the attribute member of a C descriptor

is not valid.
CFI INVALID EXTENT The value supplied for the extent member of a CFI dim t

structure is not valid.
CFI INVALID DESCRIPTOR A C descriptor is invalid in some way.
CFI ERROR MEM ALLOCATION Memory allocation failed.
CFI ERROR OUT OF BOUNDS A reference is out of bounds.

2.8 Interoperability of procedures 15

2.8 Interoperability of procedures

It would be a severe burden to implementors to provide CFI allocate, see 2.7.3, for an object
of a derived type with default initialization, so an allocatable or pointer dummy argument of an
interoperable procedure are not permitted to be of such a type.

In Fortran 2018, a Fortran dummy argument without the value attribute may correspond to a
formal parameter of the C prototype that is of a pointer type if

1. the dummy argument is a nonallocatable nonpointer character variable with assumed char-
acter length (specified by aa asterisk) and the formal parameter is a pointer to CFI cdesc t,

2. the dummy argument is allocatable, assumed-shape, assumed-rank (Section 2.12), or a
pointer without the contiguous attribute, and the formal parameter is a pointer to
CFI cdesc t, or

3. the dummy argument is assumed-type (Section 2.13) and not allocatable, assumed-shape,
assumed-rank, or a pointer, and the formal parameter is a pointer to void.

Any allocatable or pointer dummy argument of type character must have deferred character
length (specified by a colon).

In a reference from C to a Fortran procedure with an interoperable interface, a C actual argument
must be the address of a C descriptor for the intended effective argument if the corresponding
dummy argument interoperates with a C formal parameter that is a pointer to CFI cdesc t. In
this C descriptor, the members other than attribute and type must describe an object with
the characteristics of the intended effective argument. The value of the attribute member must
be compatible with the characteristics of the dummy argument. The type member must have
a value that depends on the intended effective argument as follows:

• if the dynamic type of the intended effective argument is an interoperable type listed in
Table 2, the corresponding value for that type;

• if the dynamic type of the intended effective argument is an intrinsic type for which the
processor defines a nonnegative type specifier value not listed in Table 2, that type specifier
value;

• otherwise, CFI type other.

2.9 Lifetimes

When a Fortran object is deallocated, execution of its host instance is completed, or its asso-
ciation status becomes undefined, all C descriptors and C pointers to any part of it become
undefined, and no further use of them may be made.

A C descriptor whose address is a formal parameter that corresponds to a Fortran dummy
argument becomes undefined on return from a call to the function from Fortran. If the dummy

16 2 FURTHER INTEROPERABILITY OF FORTRAN WITH C

argument does not have either the target or asynchronous attribute, all C pointers to any
part of the object become undefined on return from the call, and no further use of them may
be made.

2.10 Interoperability with the C type ptrdiff t

The named integer constant c ptrdiff t has been added to the iso c binding module for use
as a kind parameter to allow interoperability with the C type ptrdiff t.

2.11 Changes to procedures in the iso c binding module

The argument to c loc may be a noninteroperable array.

The cptr argument to c f pointer may be the C address of a storage sequence that is not in
use by any other Fortran entity. In this case, the fptr argument becomes associated with that
storage sequence. The fptr argument to c f pointer may become pointer associated with a
noninteroperable array.

The argument to c funloc may be a noninteroperable procedure.

The fptr argument to c f procpointer may become pointer associated with a noninteroperable
procedure pointer.

2.12 Assumed rank

2.12.1 Assumed-rank objects

The concept of assumed rank has been added to facilitate interoperating with C functions
that have been written for arguments of any rank. An addition to the features of TS 29113 is
the select rank construct, which allows a Fortran procedure to process arguments of variable
rank.

A dummy argument that is not a coarray and does not have the value attribute may be declared
of assumed rank with the syntax (..). For example, the procedure

subroutine scale(a) bind(c)

real a(..)

:

end subroutine scale

may be provided with an array of any rank or even a scalar as an actual argument. For a
call from Fortran to a C function with such a dummy argument in its interface, the Fortran
processor will construct a C descriptor for the actual argument and this will allow the C function
to discover the rank and act accordingly.

The interface of a procedure with an assumed-rank dummy argument is required to be explicit.

2.12 Assumed rank 17

To allow a Fortran procedure to determine the rank, a new intrinsic inquiry function has been
added:

rank(a)

a is a scalar of array of any type.

The result is a default integer scalar whose value is the rank of a.

An assumed-rank dummy argument is allowed to be passed to another procedure as assumed
rank or appear as the first argument of c loc, c sizeof, or an intrinsic inquiry function. For
c sizeof, it must not be associated with an assumed-size array (for the reason explained in
Section 2.12.3).

An assumed-rank array that is associated with a scalar is regarded as having rank 0 and size 1.
An assumed-rank array that is associated with an array has the rank and extents of the actual
argument.

The concept of type-kind-rank (TKR) compatibility for dummy arguments has been extended
to allow for assumed-rank dummy arguments. They are compatible with any rank including
assumed-rank.

2.12.2 The select rank construct

To execute alternative code depending on the actual rank of an assumed-rank object, the select
rank construct is provided. It takes the form

[name:] select rank ([associate-name =>] selector)

[select-rank-case-stmt [name]
block]...

end select [name]

where selector is the name of an assumed-rank object and each select-rank-case-stmt is one of

rank (scalar-int-constant-expr)
rank (*)

rank default

A select rank construct selects at most one block to be executed. If an associate-name is
provided, this is used for the assumed-rank object within the construct.

A rank (scalar-int-constant-expr) statement selects an array that is not assumed-size and has
the given rank. Within the block, it is treated as if it had been declared with this rank. Its
bounds are those that are obtained by the intrinsics lbound and ubound for the corresponding
actual argument.

A rank (*) statement selects an assumed-size array. Within the block, it is treated as if it had
been declared dimension (*).

18 2 FURTHER INTEROPERABILITY OF FORTRAN WITH C

A rank default statement selects an object that is not otherwise matched. It is assumed-rank
and has the same properties as the selector.

As with other constructs, the select rank construct can be named; either the same name
appears on the select rank and end rank statements or no name appears on either; and if
a name appears on a select-rank-case-stmt, the same name must appear on the select rank

statement.

2.12.3 Assumed-size arrays

An assumed-size array (from Fortran 77) is a dummy argument array whose size is assumed
from that of its effective argument. Unfortunately, this means that if the rank is greater than
one, the final extent need not be well defined. For example, if the dummy array declared thus

real a(3,*)

is associated with an array of size 10, a(1,4) is valid but a(2,4) is not.

A further difficulty is that many processors pass only the address of the first element of the
effective argument and do not pass its size. This convention has to be respected for communica-
tion with C. Therefore, an assumed-size array has to be treated as an unknown-size array. This
lies behind many of the decisions made in connection with assumed-size arrays and interfacing
with C.

Because an assumed-size array does not have a well-defined final extent, an assumed-rank array
that is associated with an assumed-size array is regarded as having a final extent of -1. This is the
value returned as size(array,dim=rank(array)) and as the final element of shape(array).
The result of size(array) is the negative value product(shape(array)). The value for the
final upper bound of an array returned by ubound is 2 less than its final lower bound.

Because the size of an assumed-size array is likely to be unknown, if an assumed-size array is
an actual argument that corresponds to a dummy argument that is an intent out assumed-rank
array, it must not be polymorphic, finalizable, of a type with an allocatable ultimate component,
or of a type for which default initialization is specified. Because a nonallocatable nonpointer
assumed-rank array might be associated with an assumed-size array, the same restriction applies
to this as an actual argument.

2.13 Assumed type

The concept of assumed type has been added to allow a C function to accept an argument
of any type except a derived type that has type parameters, type-bound procedures, or final
subroutines.

An assumed-type object is declared with the syntax type(*)1. It is unlimited polymorphic. It
is required to be a dummy argument so that during execution it is always associated with an

1or with an implicit type(*) statement.

2.14 Allocatable dummy arguments of intent out 19

object that has a type. It is not itself considered to have the same declared type as another
entity, including another unlimited polymorphic entity.

The interface of a procedure with an assumed-type dummy argument is required to be explicit.

There are two possibilities for the type of the corresponding C formal parameter

1. pointer to void, i.e. void *

2. pointer to a C descriptor

The first case provides support for an actual argument that is of any type and is either a scalar
or an assumed-size array. When a C function is invoked, the type is unknown, just as the size is
for an assumed-size array (see Section 2.12.3). Usually, at least the size of a scalar of the type
is needed; in this case, the programmer must make it available in some other way, for example,
through another argument. A scalar actual argument that is not coindexed can be associated
with an assumed-type assumed-size dummy argument.

The second case provides support for an actual argument that is of any type and is an assumed-
shape or assumed-rank array. When a C function is invoked, the type may be determined from
the C descriptor, but may not be altered.

A less restricted facility would have been possible, but these were the main requests and it was
decided that is was important to keep the feature simple.

These considerations led to the restrictions that an object of assumed type is permitted to be
neither allocatable, a coarray, a pointer, nor an explicit-shape array. Furthermore, it is not
permitted to have intent out or the value attribute. If it is not of assumed shape or assumed
rank, it is passed to a C function as a pointer to void; otherwise, it is passed as a pointer
to a C descriptor. To avoid an assumed-shape array ever being passed as a pointer to void,
an assumed-type actual argument that corresponds to an assumed-rank dummy argument is
required to be assumed-shape or assumed-rank.

An object of assumed type is severely limited within Fortran. It is not permitted to appear in
a designator or expression except as an actual argument corresponding to a dummy argument
that is of assumed-type, or as the first argument of one of the functions is contiguous, lbound,
present, rank, shape, size, ubound, and c loc.

2.14 Allocatable dummy arguments of intent out

In Fortran 2008, an allocatable dummy argument of intent out is deallocated on entry to the
procedure if the actual argument is allocated. This still applies if the procedure is called from C
and the dummy argument is the address of a C descriptor for an allocated allocatable variable.
If a C function with an interface including an allocatable dummy argument is called from
Fortran with the variable allocated, it is deallocated by the Fortran processor before entry
to the procedure. Thus, in both cases, the Fortran processor performs the deallocation when it
is appropriate.

20 2 FURTHER INTEROPERABILITY OF FORTRAN WITH C

2.15 Contiguous attribute

An assumed-rank array may have the contiguous attribute. During execution, the correspond-
ing effective argument must be contiguous.

When an interoperable Fortran procedure with a simply contiguous dummy argument is invoked
from C and the actual argument is the address of a C descriptor for a discontiguous object, the
Fortran processor is required handle the difference in contiguity.

When an interoperable C procedure whose Fortran interface has a simply contiguous dummy
argument is invoked from Fortran and the effective argument is discontiguous, the Fortran
processor ensures that the C procedure receives a descriptor for a contiguous object.

When an interoperable C procedure whose Fortran interface has a simply contiguous dummy
argument is invoked from C, and the actual argument is the address of a C descriptor for a dis-
contiguous object, the C code within the procedure must be prepared to handle the discontiguous
argument.

2.16 Optional arguments

Fortran 2008 does not provide for interoperability of procedures with optional arguments. This
is addressed in Fortran 2018 for optional arguments that do not have the value attribute.

If an interoperable procedure defined by means other than Fortran has an optional dummy
argument, and the corresponding actual argument in a reference from Fortran is absent, the
procedure is invoked with a null pointer for that argument.

If an interoperable procedure defined by means of Fortran is invoked by a C function, an optional
dummy argument is absent if and only if the corresponding argument in the invocation is a null
pointer.

2.17 Asynchronous communication

The asynchronous attribute has been extended from I/O to apply to communication performed
by means other than Fortran. The main application is for nonblocking calls of MPI Irecv and
MPI Isend. A call of MPI Irecv is very like asynchronous input – data is put in the buffer array
while execution continues. And a call of MPI Isend is very like asynchronous output - data is
copied from the buffer array while execution continues. For both, a call of MPI Wait plays the
role of wait for asynchronous I/O.

The standard does not limit asynchronous communication to these MPI functions. Instead,
it talks in general of procedures that initiate input or output asynchronous communication or
complete it. Whether a procedure has such a property is processor dependent.

The rules for input and output asynchronous communication are exactly the same as those for
asynchronous input and output, respectively.

21

3 Additional parallel features in Fortran

3.1 Teams

Teams have been introduced to allow separate sets of images to execute independently. An
important design objective was that, given a code that had been developed and tested on all
images, it should be possible to run the code on a team without making changes. This requires
that if a team has n images, the image indices within the team run from 1 to n.

It was decided that teams should always be formed by partitioning an existing team into parts,
starting with the team of all the images, which is known as the initial team. The team in
which a statement is executed by an image is known as the current team.

Information about a team is held collectively on all the images of the team in a scalar variable
of type team type from the intrinsic module iso fortran env. The components of this type
are private and it is expected that an implementation will use them to hold information about
the team that will enable efficient communication to take place. Because doing this efficiently
in terms of both memory and execution time requires the data to differ from image to image, it
is inappropriate to copy the data between images. Therefore, the following are not permitted: a
coarray variable of type team type, a coarray component of type team type, a coindexed object
of type team type, and allocating a polymorphic coarray to be of type team type or of a type
with a subcomponent of type team type. A variable of type team type becomes undefined when
an intrinsic assignment is executed if it would otherwise be given a value from another image.

A set of new teams is formed by executing a form team statement on all the images of the
current team. To which new team an image of the current team belongs is determined by its
team number, which is a positive integer. All the images with the same team number belong
to the same new team. The form team statement is supplied with an integer expression holding
the value of the team number. For example, the code

use iso_fortran_env

type (team_type) new_team

:

form team (1+mod(this_image(),2), new_team)

forms two new teams consisting of the images of the current team that have odd or even image
indices. We describe the form team statement in detail in Section 3.3.

Changes of team take place at the change team and end team statements, which mark the
beginning and end of a new construct, the change team construct:

change team (new_team)

: ! Statements executed with new_team as the current team

end team

The values of new team must have been established by the prior execution of a form team

statement on all the images of the current team. Both the change team and the end team

statement are image control statements. The executing image and the other images of the new

22 3 ADDITIONAL PARALLEL FEATURES IN FORTRAN

team synchronize at these statements. These images must all execute the same change team

statement. While we expect it to be usual for the images of the other new teams to execute the
construct, this is not required – they might continue to execute in the previously current team.
We describe the change team construct in detail in Section 3.4.

The team that is current during the execution of a form team statement is known as the parent
of each new team formed. We find it convenient to refer to each new team as a child of the
current team. If the current team is not the initial team, the children have as parent a team that
itself has a parent. Parents of parents can occur at any depth and are known as ancestors. Note
that change team constructs can be nested to any depth and can be executed in a procedure
called from within a change team construct.

3.2 Image failure

It is anticipated that coarray programs may execute on huge numbers of images. While the
likelihood of a particular image failing during the execution of a program is small, the likelihood
that one of them might fail is significant when there are a huge number of them. Therefore, the
concept of continued execution in the presence of failed images has been introduced. It is not
required that the system support this. The constant stat failed image has been added to the
module iso fortran env. This is positive if this support is provided and negative otherwise.
If it is positive, it is used for the value of a stat= specifier or stat argument if a failed image
is involved in either an image control statement, a reference to a coindexed object (see Section
3.10), or an invocation of a collective (Section 3.19) or atomic (Section 3.20) subroutine, and no
other error condition occurs.

It is not expected that the system will automatically produce correct results in the presence of
failed images. Instead, there are features in the language to permit a programmer to design
a recovery process. For example, it may be possible to go back to a previous state of the
computation and repeat it with fewer images or with ‘reserve’ images brought in to replace
failed ones. There are likely to be only a few key points in the computation from which recovery
is practical, so it is important that the working images all reach such a point, albeit with incorrect
results. For example, the change team construct does not fail in the presence of failed images –
instead, it executes on all the remaining images of the team. In Fortran 2018, stat= specifiers
(see Section 3.21) have been added to allow such continued execution. The term active has
been introduced for an image that has neither failed nor stopped.

3.3 Form team statement

The form team statement takes the general form

form team (team-number, team-variable[, form-team-list])

where team-number is a scalar integer expression whose value must be positive and team-variable
is a scalar variable of type team type whose values on all the images of a child team will be
defined with information about that child team. All the images of the current team that have

3.4 Change team construct 23

the same team-number value will be in the same child team. This value is the team number
for the child team and is used to identify it in statements executed in an image of another child
of the same parent. The team numbers of all the images of the initial team are always −1.

By default, the processor chooses which image indices are assigned to which images of each child
team, and the choice may vary from processor to processor. However, they may be specified by
including

new index=scalar-int-expr

in the form-team-list to give the image index for the executing image in the child team. If a
child team has k images, the values on those images must be a permutation of 1, 2, . . . k. The
form-team-list may also contain stat= and errmsg= specifiers as, for example, for allocate and
deallocate.

The form team statement is an image control statement. The same statement must be executed
by all active images of the current team and they synchronize.

3.4 Change team construct

The change team statement takes the general form

[construct-name:] change team (team-value[, association-list][, stat-list])

where team-value is a scalar of type team type. Its values on all active images of the current
team must be as constructed by the execution of a form team statement on all those images (see
Section 3.1). If it is a variable, its value must not be altered during the execution of the change

team construct. Each association declares a new name and new cobounds for an associating
coarray that is in scope at the change team statement. For example, if big has cobounds
[1:k,1:k] and the current team is subdivided into k teams of k images, the association

part[*] => big

makes part an associating coarray with cobounds [1:k] on each new team. The appearance
of an association does not prevent the coarray being referenced by its original name and with
its original cosubscripts and cobounds. The mapping to an image index is unchanged but the
image index now refers to an image of the new team. The intrinsic ucobound returns the largest
final upper cobound in a valid reference to an image of the new team.

The stat-list returns information about the success of the execution. There may be at most one
stat= specifier and at most one errmsg= specifier.

The end team statement takes the general form

end team [([stat-list])] [construct-name]

The reason for the appearance of stat-list here is to detect the possibility of image failure in the
current team. The end team statement is an image control statement and the images of the
team that was current inside the construct synchronize here.

An exit statement that belongs to a change team construct may appear in its block. Its
execution causes termination of the execution of the block.

24 3 ADDITIONAL PARALLEL FEATURES IN FORTRAN

3.5 Coarrays allocated in teams

In Fortran 2008, coarrays are always allocated and deallocated in synchrony across all images,
which allows each image to calculate the address of a coarray element on another image. This
is sometimes called symmetric memory. In Fortran 2018, synchronization is now across the
team, of course. Symmetric memory is maintained within teams by requiring that

1. any allocatable coarray that is allocated before entry to a change team construct remains
allocated during the execution of the construct and

2. any allocatable coarray that becomes allocated within a change team construct and is still
allocated when the construct is left is automatically deallocated, even if it has the save

attribute.

This allows each image to hold its allocatable coarrays in a stack with those allocated in the
initial team at the bottom, those allocated in the team that is a child of the initial team next,
those allocated in the team that is a child of the child team next, etc. Of course, there is no
requirement for exactly this form of memory management to be used.

3.6 Critical construct

The critical statement now takes the general form

[construct-name:] critical [([stat-list])]

with optional stat= and errmsg= specifiers in its stat-list to detect the case of an image fail-
ing while executing a critical construct. If stat= is present in this case, the construct is
treated as having completed execution so that another image can commence executing it. When
this other image commences execution of the construct, the stat= variable will have the value
stat failed image to indicate the failure of the previous execution of the construct. The
errmsg= specifier provides a message in the event of failure.

An exit statement that belongs to the construct may appear in its block. Its execution causes
termination of the execution of the block.

3.7 Lock and unlock statements

Failure of an image causes all lock variables that are locked by that image to become unlocked.

If a stat= specifier is present in a lock statement and the image of the lock variable has
failed, the stat variable is given the value stat failed image. Otherwise, if the lock variable is
unlocked because of the failure of the image that locked it, the stat variable is given the value
stat unlocked failed image from the module iso fortran env. If a stat= specifier is present
in an unlock statement and the image of the lock variable has failed, the stat variable is given
the value stat failed image.

3.8 Events 25

3.8 Events

Events have been introduced to allow an action to be delayed until one or more actions have
been performed on other images. An image records that it has performed an action by executing
an event post statement. The record is held in a scalar coarray of type event type from the
intrinsic module iso fortran env and known as an event variable. An image executes an
event wait statement if it needs to delay its actions for those of other images. Each event

post execution has a matching event wait execution that involves the same event variable.
The segment that precedes the event post execution precedes the segment that succeeds the
matching event wait execution.

The value of an event variable includes its event count, which is of type integer

(atomic int kind) and intially has the value 0. It records the number of event post exe-
cutions for the event variable that are currently unmatched. The count of the specified event
variable is atomically incremented by 1 when an event post statement is executed and is decre-
mented by a chosen threshold when an event wait statement is executed. This allows for the
case where several actions are needed before another action can take place.

The type event type is extensible and has no type parameters. All its components are private.
An event variable may be defined only by appearance in an event post or event wait state-
ment. It may be referenced or defined in a segment that is unordered with respect to another
segment in which it is defined.

The event post statement is an image control statement that takes the general form

event post (event-variable [, stat-list])

with optional stat=, and errmsg= specifiers in its stat-list. Successful completion of the state-
ment atomically increases its event count by 1. If there is an error condition, the value of the
event count is processor dependent.

The event wait statement is an image control statement that takes the general form

event wait (event-variable [, wait-list])

with optional until count=, stat= and errmsg= specifiers in its wait-list. The event variable
must not be coindexed. An until count= specifier has the form

until count = scalar-integer-expression

where the value of the expression provides the threshold. The threshold is 1 if there is no
until count= specifier. The executing image waits until the event count is at or above the
threshold, then atomically decreases the count by the threshold and resumes execution. If the
threshold is k, the first k unmatched event post executions for the event variable are matched
with this event wait execution. After an error condition, the value of the event count is
processor dependent.

The value of an event count may be determined by the intrinsic subroutine

26 3 ADDITIONAL PARALLEL FEATURES IN FORTRAN

call event query(event, count[, stat])

event is an event variable that is not coindexed. It has intent in.

count is a scalar integer with decimal range at least that of default integer. It has intent out.
It is atomically given the value of the count of event.

stat is scalar integer with decimal range at least 4. It may not be coindexed. If present and
no error condition occurs, it is given the value 0. If an error condition occurs and stat

is present, it is given a processor-dependent positive value; otherwise error termination is
initiated.

3.9 Sync team statement

The sync team statement has been introduced to allow synchronization within an ancestor team
without leaving a change team construct or within a child team to which the executing image
belongs without entering a change team construct. It has the general form

sync team ([team-value [, stat-list])

where team-value is of type team type and identifies the child team, the current team, or an
ancestor team. Successful execution synchronizes all the images of the specified team in the
same way as sync all does for the current team.

The stat-list returns information about the success of the execution. There may be at most one
stat= specifier and at most one errmsg= specifier.

3.10 Image selectors

An image selector may have a stat= specifier to permit the programmer to detect the case where
the image selected has failed:

a[cosubscript-list[, stat=stat-variable]]

If the image has failed, the stat= specifier is given the value stat failed image. Otherwise, it
is given the value zero. Execution always continues if the image has failed, whether or not there
is a stat= specifier. The value obtained on a reference is processor dependent. For a definition,
there is no effect except for defining the stat= specifier if it appears.

Consider a coarray a that is in scope at a change team statement. If this is accessed in the
change team construct using its name, cosubscripts map to an image index just as they do
outside the construct, but this refers to an image within the current team. However, it is likely
that data from other teams will need to be accessed from time to time, subject to suitable
synchronization. Significant overheads are likely to be associated with leaving the construct,
performing the data exchange, and changing teams again. Instead, an image of a sibling team
may be accessed thus

a[cosubscript-list, team number=scalar-integer-expression]

3.11 Procedure calls and teams 27

where the team number value is one of those used to identify teams in the form team statement
that was executed to create the currrent team. The coarray must be established (Section 3.11)
in an ancestor of the current team. An image of an ancestor team (or the current team) may
be accessed thus

a[cosubscript-list, team=team-variable]

where team-variable is a scalar variable of type team type. The coarray must be established
(Section 3.11) in the team or an ancestor of it.

A stat= specifier may appear as well as a team number= or team= specifier and may be placed
before or after it.

3.11 Procedure calls and teams

When a procedure with a coarray dummy argument is called, the current team does not change
but its siblings and ancestors are not available to the dummy coarray in image selectors. Indeed,
it is hard to see how code could be written in the procedure to cope with different sets of
nested change team constructs at the point of invocation. Because of this, the concept of
‘establishment’ for a coarray in a team has been introduced.

A nonallocatable coarray with the save attribute is established in the initial team. An allocated
allocatable coarray is established in the team in which it was allocated. An unallocated allo-
catable coarray is not established. An associating coarray in a change team construct (Section
3.4) is established in the team that is current in the change team construct. A nonallocatable
coarray that is an associating entity in an associate, select rank, or select type construct
is established in the team in which the associate, select rank, or select type statement is
executed. A nonallocatable coarray that is a dummy argument or host associated with a dummy
argument is established in the team in which the procedure was invoked. A coarray dummy
argument is not established in any ancestor team.

3.12 Intrinsic functions get team and team number

The transformational intrinsic function

get team ([level])

returns a value of type team type.

level is an optional integer scalar with value one of the constants initial team, parent team,
and current team in the intrinsic module iso fortran env.

The value returned is that of a team variable for the current team if level is not present or the
team indicated by level if it is present.

This is the only way to obtain a team value for the initial team and will be needed to refer to
it in a sync team statement or image selector when executing in a child team.

The transformational intrinsic function

28 3 ADDITIONAL PARALLEL FEATURES IN FORTRAN

team number ([team])

returns a value of type default integer. It is the team number (Section 3.3) of the executing
image within the specified team.

team is an optional scalar value of type team type that specifies the current or an ancestor
team. Absence specifies the current team.

This allows the executing image to determine in which team it lies and execute appropriate
code, as illustrated in Figure 1.

Figure 1: Use of team number.

change team (odd_even)

select case (team_number())

case (1)

: ! Code for images in team 1.

case (2)

: ! Code for images in team 2.

end select

:

end team

3.13 Intrinsic function image index

The intrinsic function image index now has three forms:

image index (coarray, sub)

image index (coarray, sub, team)

image index (coarray, sub, team number)

coarray is a coarray that can have cosubscripts and is of any type.

sub is a rank-one integer array whose size is the corank of coarray.

team is a scalar value of type team type that specifies the current or an ancestor team.

team number is an integer scalar value identifying a sibling team of the current team.

The relevant team for the three forms of invocation is the current team, the team specified by
team, or the sibling team specified by team number. If sub holds a valid sequence of cosubscripts
for coarray in the relevant team, the result is the corresponding image index. Otherwise, the
result is zero.

For a given set of cosubscripts, the value of the function may change on entering a change team

construct. For example, image index (coarray, [30]) might be 30 in the parent team and 0
in the child team if this has only 15 images. Therefore, image index cannot remain an inquiry
function and becomes transformational.

3.14 Intrinsic function num images 29

3.14 Intrinsic function num images

The intrinsic function num images now has three forms:

num images ()

num images (team)

num images (team number)

team is a scalar value of type team type that specifies the current or an ancestor team.

team number is an integer scalar value identifying a sibling team of the current team.

The relevant team for the three forms of invocation is the current team, the team specified by
team, or the sibling team specified by team number. The result is the number of images in the
relevant team.

3.15 Intrinsic function this image

The intrinsic function this image now has three forms:

this image ([team])

this image (coarray[, team])

this image (coarray, dim[, team])

team is a scalar value of type team type that specifies the current or an ancestor team.

coarray is a coarray that can have cosubscripts and is of any type. If allocatable, it must be
allocated. If it is of type team type, the argument team must be present.

dim is an integer scalar value in the range 1 ≤ dim ≤ n where n is the corank of coarray.

The result is of type default integer. The relevant team is the team specified by team or the
current team if team is absent. If coarray is absent, the result is the image index of the executing
image in the relevant team. If coarray is present and dim is not, the result is a rank-one array
holding the sequence of cosubscript values for coarray that would specify the executing image
in the relevant team. If coarray and dim are present, the result is the value of cosubscript dim
in the sequence of cosubscript values for coarray that would specify the executing image in the
relevant team.

3.16 Intrinsic function move alloc

It has been realized that the intrinsic function move alloc cannot be pure if its arguments are
coarrays because it then involves synchronization. It has had additional optional arguments
stat and errmsg added and now has the form:

30 3 ADDITIONAL PARALLEL FEATURES IN FORTRAN

call move alloc(from, to[, stat, errmsg])

from is allocatable and of any type, rank, and corank. It has intent inout.

to is allocatable and of the same rank and corank as from. It must be type compatible with
from and polymorphic if from is polymorphic. It has intent out. Each nondeferred type
parameter value of the declared type of to must be the same as the corresponding value
for from.

stat is an optional integer scalar with a decimal exponent range of at least 4. It has intent out.
It must not be coindexed. If it is not present and an error occurs, error termination is initi-
ated. If the invocation is successful, it is given the value zero. If an error occurs, it is given
a nonzero value. If there is a stopped image, it is given the value stat stopped image.
Otherwise, if there is a failed image, it is given the value stat failed image. Otherwise,
it is given a value other than stat stopped image or stat failed image.

errmsg is an optional intent inout scalar of type default character. It must not be coindexed.
When present, it provides an explanatory message in the event of an error condition.

Successful execution is as in Fortran 2008 except that it applies to the current team. If stat is
given the value stat failed image, execution takes place on the active images.

3.17 Fail image statement

The statement

fail image

causes the executing image to behave as if it has failed. No further statements are executed by
the image. It allows testing of a code that has been designed to recover from an image failure.

3.18 Detecting failed and stopped images

Three new intrinsic procedures have been added to assist the detection of failed and stopped
images.

failed images ([team, kind])

stopped images ([team, kind])

are transformational functions that return a rank-one integer array of size equal to the number
of images in the team that are known to have failed or stopped.

team is an optional scalar value of type team type that specifies the current or an ancestor
team. Absence specifies the current team.

kind is an optional integer scalar constant value that specifies an integer kind for the result
array. Absence specifies the kind of default integer.

3.19 Collective subroutines 31

The values of the elements of the result array are the image indices of the failed or stopped
images, in increasing order.

image status (image[, team])

is an elemental function whose result is of type default integer.

image is a integer. Its value must be the image index of an image in team.

team is an optional scalar value of type team type that specifies the current or an ancestor
team. Absence specifies the current team.

The value of the result is stat failed image if image has failed, stat stopped image if image
has stopped, or zero otherwise.

3.19 Collective subroutines

Intrinsic subroutines have been added to perform collective operations on all the images of a
team, such as summing the values of a variable across the images. It is to be expected that the
execution will have been optimized by the system, for example, by associating the images of the
team with the leaves of a binary tree and grouping the operations by tree level. The subroutines
are invoked by one of these statements

call co broadcast(a, source image[, stat, errmsg])

call co max(a[, result image, stat, errmsg])

call co min(a[, result image, stat, errmsg])

call co sum(a[, result image, stat, errmsg])

call co reduce(a, operation[, result image, stat, errmsg])

The same statement must be executed on all active images of the team and it must occur in a
context that would allow an image control statement. There is no automatic synchronization at
the statement, but it is to be expected that the system applies some form of synchronization while
executing the subroutine. To avoid the possibility of these synchronizations causing deadlock,
the sequence of invocations must be the same on all active images of the team from the beginning
to the end of execution as a team.

The arguments are as follows

a is a scalar or an array that has the same shape on all the images of the current team. It has
intent inout. It must not be coindexed. It may be a coarray but this is not required.

source image is an intent in integer scalar that specifies the image from which values are
broadcast. It must have the same value on all images of the team.

32 3 ADDITIONAL PARALLEL FEATURES IN FORTRAN

result image is an optional intent in integer scalar. If present, it must have the same value on
all images of the team. It specifies the image on which the result is placed and a becomes
undefined on all other images of the team. If it is not present, the result is broadcast to
all images of the team.

operation is a pure function with two scalar dummy arguments and a scalar result all of
the type and type parameters of a. Neither argument may be polymorphic, allocatable,
optional, or a pointer. If one has the asynchronous, target, or value attribute, the other
must too. It must be the same function on all images of the team and must implement an
operation that is associative apart from the effects of rounding.

stat is an optional intent out integer scalar with a decimal exponent range of at least four.
If it is not present and an error occurs, error termination is initiated. If present on one
image, it must be present on all images of the team. It must not be coindexed. If the
invocation is successful, it is given the value zero. If an error occurs, it is given a nonzero
value and the argument a becomes undefined. If there is a stopped image, it is given
the value stat stopped image. Otherwise, if there is a failed image, it is given the value
stat failed image. Otherwise, it is given a value other than stat stopped image or
stat failed image.

errmsg is an optional intent inout scalar of type default character. It must not be coindexed.
When present, it provides an explanatory message in the event of an error condition.

The actions of the collectives are as follows

co broadcast copies the value of a on source image to the corresponding argument on all the
other images of the team as if by intrinsic assignment. The variable a may have any type,
but its dynamic type and type parameter values must be the same on all images of the
team.

co max and co min compute the maximum or minimum value of a on all images of the team.
The result is placed in a on result image if this is present and otherwise in a on all images
of the team. The variable a may be of type integer, real, or character, but must have the
same type and type parameters on all images of the team. If it is an array, the result is
computed element by element.

co sum computes the sum of the values of a on all images of the team. The variable a may be of
any numeric type, but must have the same type and type parameters on all images of the
team. If it is an array, the result is computed element by element. The order of summation
is not specified so the result may be affected by rounding errors that can vary even between
different runs on the same computer. The result is placed in a on result image if this is
present and otherwise exactly the same result is placed in a on all images of the team.

co reduce behaves like co sum but is for an operation that has been written by the programmer
as a function. The variable a may be of any type but must not be polymorphic.

3.20 New and enhanced atomic subroutines 33

3.20 New and enhanced atomic subroutines

Nine atomic subroutines have been added and the two old ones have an added argument. The
new ones are invoked by one of these statements

call atomic add (atom, value[, stat])

call atomic and (atom, value[, stat])

call atomic or (atom, value[, stat])

call atomic xor (atom, value[, stat])

call atomic fetch add (atom, value, old[, stat])

call atomic fetch and (atom, value, old[, stat])

call atomic fetch or (atom, value, old[, stat])

call atomic fetch xor (atom, value, old[, stat])

call atomic cas (atom, old, compare, new[, stat])

The arguments are as follows

atom is a scalar coarray or coindexed object of type integer(atomic int kind) or, alterna-
tively, for atomic cas only, logical(atomic logical kind). It has intent inout.

value is an integer scalar. It has intent in.

old is a scalar of the same type and kind as atom. It has intent out.

compare is a scalar of the same type and kind as atom. It has intent in.

new is a scalar of the same type and kind as atom. It has intent in.

stat is an optional integer scalar with a decimal exponent range of at least 4. It must not be
coindexed. It has intent out. If is not present and an error occurs, error termination is
initiated. If the invocation is successful, it is given the value zero. If an error occurs, it is
given a nonzero value and any atom or old arguments become undefined. If atom is on a
failed image and there is no other cause for the error, the value given is stat failed image.

The actions of the subroutines are as follows

atomic add causes atom to be given the value atom+int(value,atomic int kind).

atomic and causes atom to be given the value iand(atom,int(value,atomic int kind)).

atomic or causes atom to be given the value ior(atom,int(value,atomic int kind)).

atomic xor causes atom to be given the value ieor(atom,int(value,atomic int kind)).

atomic fetch add causes atom to be given the value atom+int(value,atomic int kind) and
old to be given the value atom had on entry.

atomic fetch and causes atom to be given the value iand(atom,int(value,atomic int kind))

and old to be given the value atom had on entry.

34 4 CONFORMANCE WITH ISO/IEC/IEEE 60559:2011

atomic fetch or causes atom to be given the value ior(atom,int(value,atomic int kind))

and old to be given the value atom had on entry.

atomic fetch xor causes atom to be given the value ieor(atom,int(value,atomic int kind))

and old to be given the value atom had on entry.

atomic cas tests whether the value of atom is equal to that of compare. If they are equal, it
causes atom to be given the value of int(new,atomic int kind) if it is of type integer
and new if it is of type logical. Otherwise, the value of atom is not changed. In either case,
old is given the value atom had on entry.

If the stat argument is present and no error condition occurs, it is given the value 0. If an
error condition occurs, any atom or old argument becomes undefined. This argument has also
been added as an optional final argument with the same effect to the intrinsic subroutines
atomic define and atomic ref.

3.21 Failed images and stat= specifiers

If a stat= specifier is present in a change team, end team, event post, form team, sync

all, sync images, or sync team statement and one of the images involved has failed but
none has stopped and no other error condition occurs, the stat= specifier is given the value
stat failed image and the intended action takes place on the active images involved.

4 Conformance with ISO/IEC/IEEE 60559:2011

A large number of changes to the intrinsic modules ieee arithmetic, ieee exceptions, and
ieee features have been made for conformance with the new IEEE standard for floating-point
arithmetic.

4.1 Subnormal values

The new IEEE standard uses the term ‘subnormal’ instead of ‘denormal’ for a value with mag-
nitude less than any normal value and less precision.

The named constants ieee negative subnormal and ieee positive subnormal of type
ieee class type have been added to the module ieee arithmetic with the same values as
ieee negative denormal and ieee positive denormal, respectively.

The named constant ieee subnormal of type ieee features type has been added to the mod-
ule ieee features and has the same value as ieee denormal.

The inquiry function ieee support subnormal has been added to ieee arithmetic and is
exactly the same as ieee support denormal except for its name.

4.2 Type for floating-point modes 35

4.2 Type for floating-point modes

The type ieee modes type has been added to ieee exceptions for storing all the floating-
point modes, that is, the rounding modes, underflow mode, and halting mode. Also added to
ieee exceptions are subroutines for getting and setting the modes.

call ieee get modes(modes) where modes is a scalar of type ieee modes type that has intent
out and is assigned the value of the floating-point modes.

call ieee set modes(modes) where modes is a scalar of type ieee modes type that has intent
in and has a value obtained by a previous call of ieee get modes. The floating-point
modes are restored to their values at the time of the previous call.

4.3 Rounding modes

The new IEEE standard has two modes for rounding to the nearest representable number, which
differ in the way they handle ties: in the case of a tie, roundTiesToEven uses the value with an
even least significant digit and roundTiesToAway uses the value further from zero. The value
ieee nearest of the type ieee round type corresponds to roundTiesToEven and the value
ieee away has been added to correspond to roundTiesToAway.

The optional argument radix has been added to the subroutines ieee get rounding mode and
ieee set rounding mode to allow the decimal rounding mode to be inquired about and set
independently of the binary rounding mode. The argument radix has type integer and must
have the value 2 or 10. ieee set rounding mode (round value, radix) must not be invoked
unless there is some support for this radix.

4.4 Rounded conversions

The elemental function ieee real has been added to ieee arithmetic for rounded conver-
sion to real type, as specified in the IEEE standard by the convertFromInt and convertFormat
operations.

ieee real(a[, kind]) where a is of type real or integer and kind is a scalar integer constant
expression. The result is of type default real if kind is absent and of type real(kind)

otherwise. The result has the same value as a if that value is representable in the repre-
sentation method of the result and is rounded according to the rounding mode otherwise.

The optional argument round of type ieee round type has been added to ieee rint. The
result for ieee rint(x,round) is the value of x rounded to an integer according to the mode
specified by round.

36 4 CONFORMANCE WITH ISO/IEC/IEEE 60559:2011

4.5 Fused multiply-add

The elemental function ieee fma has been added to ieee arithmetic for the fused multiply-add
operation.

ieee fma(a,b,c) where a, b, and c are real with the same kind type parameter returns the
mathematical value of a×b+c rounded according to the rounding mode. ieee overflow,
ieee underflow, or ieee inexact are signaled according to the final step in the calcula-
tion and not by any intermediate calculation.

4.6 Test sign

The elemental function ieee signbit has been added to ieee arithmetic to test the sign of a
real as specified in the IEEE standard by the isSignMinus operation.

ieee signbit(x) where x is real returns a value of type default logical that is true if and only
if the sign of x is minus.

4.7 Conversion to integer type

The elemental function ieee int has been added to ieee arithmetic for conversion to integer
type.

ieee int(a, round[, kind]) where a is of type real, round is of type ieee round type, and
kind is an integer constant expression returns a value of type integer. If kind is present, it
gives the kind type parameter of the result; otherwise, the result is of type default integer.
The value of the result is that of a converted to an integer according to the rounding
mode specified by round provided this value is representable in the result; otherwise,
ieee invalid is signaled and the result is processor dependent. The processor is required
to consistently signal ieee inexact if the result is not exact or not do so.

4.8 Remainder function

The arguments of the elemental function ieee rem are now required to have the same radix.

4.9 Maximum and minimum values

The elemental functions ieee max num, ieee max num mag, ieee min num, and
ieee min num mag have been added for the IEEE operations of maxNum, maxNumMag,
minNum, and minNumMag.

4.10 Adjacent machine numbers 37

ieee_max_num(x,y)

ieee_max_num_mag(x,y)

ieee_min_num(x,y)

ieee_min_num_mag(x,y)

where x and y are real with the same kind type parameter, returns either x or y. The result is x
if x>y, abs(x)>abs(y), x<y, or abs(x)<abs(y), respectively. It is y if x<y, abs(x)<abs(y),
x>y, or abs(x)>abs(y), respectively. If one of x and y is a quiet NaN, the result is the
other. If one or both of x and y are signaling NaNs, ieee invalid signals and the re-
sult is a NaN. Otherwise, which is returned is processor dependent for ieee max num(x,y)

and ieee min num(x,y); it is ieee max num(x,y) for ieee max num mag(x,y); and it is
ieee min num(x,y) for ieee min num mag(x,y).

4.10 Adjacent machine numbers

The elemental functions ieee next down and ieee next up have been added for for the IEEE
operations of nextDown and nextUp.

ieee next down(x) where x is real returns the greatest value in the representation method of x
that compares less than x, except that when x is equal to −∞ the result has the value −∞, and
when x is a NaN the result is a NaN. If x is a signaling NaN, ieee invalid signals; otherwise,
no exception is signaled.

ieee next up(x) where x is real returns the least value in the representation method of x that
compares greater than x, except that when x is equal to +∞ the result has the value +∞, and
when x is a NaN the result is a NaN. If x is a signaling NaN, ieee invalid signals; otherwise,
no exception is signaled.

If ieee support datatype(x) has the value false, these functions must not be invoked. If
ieee support inf(x) has the value false, ieee next down(x) must not be invoked when x has
the value -huge(x) and ieee next up(x) must not be invoked when x has the value huge(x).

4.11 Comparisons

The elemental functions ieee quiet eq, ieee quiet ge, ieee quiet gt, ieee quiet le,
ieee quiet lt, and ieee quiet ne have been added for the IEEE operations of
compareQuietEqual, compareQuietGreaterEqual, compareQuietGreater, compareQuietLess-
Equal, compareQuietLess, and compareQuietNotEqual.

ieee_quiet_eq(a,b)

ieee_quiet_ge(a,b)

ieee_quiet_gt(a,b)

ieee_quiet_le(a,b)

ieee_quiet_lt(a,b)

ieee_quiet_ne(a,b)

38 5 FEATURES THAT ADDRESS DEFICIENCIES AND DISCREPANCIES

where a and b are real with the same kind type parameter returns true if a compares with b as
equal, greater than or equal, greater than, less than or equal, less than, or not equal, respectively,
and false otherwise. If a or b is a NaN, the result will be false. If a or b is a signaling NaN,
ieee invalid signals; otherwise, no exception is signaled.

The elemental functions ieee signaling eq, ieee signaling ge, ieee signaling gt,
ieee signaling le, ieee signaling lt, and ieee signaling ne have been added for the
IEEE operations of compareSignalingEqual, compareSignalingGreaterEqual, compareSignaling-
Greater, compareSignalingLessEqual, compareSignalingLess, and compareSignalingNotEqual.

ieee_signaling_eq(a,b)

ieee_signaling_ge(a,b)

ieee_signaling_gt(a,b)

ieee_signaling_le(a,b)

ieee_signaling_lt(a,b)

ieee_signaling_ne(a,b)

where a and b are real with the same kind type parameter returns true if a compares with
b as equal, greater than or equal, greater than, less than or equal, less than, or not equal,
respectively, and false otherwise. If a or b is a NaN, the result will be false and ieee invalid

signals; otherwise, no exception is signaled.

If x1 and x2 are of numeric types and the type of x1+x2 is real, comparisons are made as follows

x1==x2 or x1.eq.x2 compareQuietEqual
x1>=x2 or x1.ge.x2 compareSignalingGreaterEqual
x1>x2 or x1.gt.x2 compareSignalingGreater

x1<=x2 or x1.le.x2 compareSignalingLessEqual
x1<x2 or x1.lt.x2 compareSignalingLess

x1/=x2 or x1.ne.x2 compareQuietNotEqual

If x1 and x2 are of numeric types and the type of x1+x2 is complex, comparisons are made as
follows

x1==x2 or x1.eq.x2 compareQuietEqual
x1/=x2 or x1.ne.x2 compareQuietNotEqual

5 Features that address deficiencies and discrepancies

5.1 Default accessibility for entities accessed from a module

If a module a uses module b, the default accessibility for entities it accesses from b is that of a.
Specifying another accessibility for each entity is awkward and error prone. It is now possible
for the name of a module to be included in the list of names of entities made public or private on
a public or private statement. This sets the default for all entities accessed from that module.
The name must appear at most once in all the public and private statements in the module.

5.2 Implicit none enhancement 39

5.2 Implicit none enhancement

The syntax of the implicit none statement has been extended to

implicit none [([implicit-none-spec-list])]

where each implicit-none-spec is external or type and appears at most once. The appearance
of external requires that the names of external and dummy procedures with implicit interfaces
in the scoping unit and any contained scoping units be explicitly declared to have the external

attribute. The appearance of type requires the types of all data entities in the scoping unit and
any contained scoping units to be explicitly declared. The unqualified implicit none statement
has the same effect as implicit none (type).

5.3 Referencing a property of an object in a constant expression

The rules on what may appear in a constant expression have been relaxed to allow such things
as

integer :: b = bit_size(b)

real :: e = sqrt(sqrt(epsilon(e)))

integer :: iota(10) = [(i, i = 1, size(iota,1))]

In Fortran 2018, a constant expression may depend on a type parameter or an array bound of
an entity specified to the left in the same statement, but not within the same expression. For
example, the following remain prohibited:

integer :: x(10,size(x,1))

character(*),parameter :: c = repeat(’c’,len(c))

5.4 Enhancements to inquire

If a recl= inquiry is made in an inquire statement in Fortran 2008 and there is no connection
or the connection is for stream access, the variable becomes undefined. In Fortran 2018, it is
assigned the value -1 if there is no connection and the value -2 if the connection is for stream
access.

If a pos= or size= inquiry is made in an inquire statement and there are pending data transfer
operations for the specified unit, the value assigned is computed as if all the pending data
transfers had already completed.

5.5 d0.d, e0.d, es0.d, en0.d, g0.d and ew.d e0 edit descriptors

It was anomalous that the field width w was allowed to be given as zero for some output g

editing, but not for d, e, es, en, and all g output editing. This has been corrected. If the value

40 5 FEATURES THAT ADDRESS DEFICIENCIES AND DISCREPANCIES

is zero, the processor selects the smallest positive actual field width that does not result in a
field filled with asterisks. A zero value for the field width is not permitted for input.

The g0.d edit descriptor can be used to specify the output of integer, logical, and character
data. It follows the rules for the i0, l1, and a edit descriptors, respectively.

The value 0 may be given to an exponent digits parameter in an ew.d ee edit descriptor. The
effect of this is that the processor uses the minimum number of digits required to represent the
exponent value. This avoids leading zeros, which are unsightly and can cause errors if the value
is read in another language.

5.6 Formatted input error conditions

An error condition occurs if the input field presented for logical or numeric editing during
execution of a formatted input statement does not have one of the standard forms and is not
acceptable to the processor.

5.7 Rules for generic procedures

In Fortran 2018, if one procedure has more nonoptional dummy procedures than the other
has nonoptional dummy procedures, they may be identified by the same generic name. It was
anomalous that this means of disambiguation was absent from Fortran 2008.

5.8 Enhancements to stop and error stop

The stop code in a stop or error stop statement is no longer restricted to a constant expression.
It can be any scalar expression of type integer or default character.

Output of the stop code and exception summary from a stop or error stop statement can be
controlled with a quiet= specifier, for example,

stop failure_message, quiet=no_messages

If the quiet= specifier is true, no stop code or exception summary is output. Any scalar logical
expression may be used for the quiet= specifier.

5.9 Intrinsics that access the computing environment

An extra optional argument errmsg has been added to each of the intrinsic subroutines
get command, get command argument, and get environment variable. It is a scalar intent
inout argument of type default character and returns an error message if an error occurs. In
the case of a warning situation that would assign -1 to the argument status, errmsg is left
unchanged. This change brings these procedures into line with the ability to retrieve error mes-
sages for I/O statements via the iomsg= specifier, image control statements via the errmsg=

5.10 New elemental intrinsic function out of range 41

specifier and invocations of execute command line via the cmdmsg argument.

The effects of invoking the intrinsic procedures command argument count, get command,
get command argument, and get environment variable, on images other than image one of
the initial team are now as on image one. This is important with the addition of teams, because
a team need not include image one. In the case of get environment variable, it is proces-
sor dependent whether an environment variable that exists on an image also exists on another
image, and if it does exist on both images, whether the values are the same.

5.10 New elemental intrinsic function out of range

The new elemental intrinsic function out of range has been added to test whether a real or
integer value can be safely converted to a different real or integer type and kind.

out of range(x,mold[,round])

x is of type real or integer.

mold is of type real or integer.

round is of type logical and may be present only if x is of type real and mold is of type
integer.

The arguments mold and round are required to be scalars. The result is of type default logical.
It has the value true if and only if

• the value of x is an IEEE infinity or NaN, and mold is of type integer or is of type real
and of a kind that that does not support such a value;

• mold is of type integer, round is absent or present with the value false, and the integer with
largest magnitude that lies between zero and x inclusive is not representable by objects
with the type and kind of mold;

• mold is of type integer, round is present with the value true, and the integer nearest x, or
the integer of greater magnitude if two integers are equally near to x, is not representable
by objects with the type and kind of mold; or

• mold is of type real and the result of rounding the value of x to the extended model for the
kind of mold has magnitude larger than that of the largest finite number with the same
sign as x that is representable by objects with the type and kind of mold.

5.11 New reduction intrinsic reduce

The new transformational intrinsic function reduce has been added to match the collective
subroutine co reduce that was included in the Technical Specification for additional parallel
features.

42 5 FEATURES THAT ADDRESS DEFICIENCIES AND DISCREPANCIES

reduce(array,operation[,mask,identity,ordered]) or

reduce(array,operation,dim[,mask,identity,ordered])

array is an array of any type.

operation is a pure function with two arguments and result of the type and type param-
eters of array. It implements a mathematically associative operation that need not
be commutative. The arguments and result must not be polymorphic.

dim is an integer scalar with value 1 <= dim <= n, where n is the rank of array.

mask is logical and conformable with array.

identity is a scalar of the type and type parameters of array.

ordered is a logical scalar.

This function returns a scalar of the type and type parameters of array. Starting with the
sequence of elements of array in array element order, an adjacent pair of elements are replaced
by the result of applying operation to the pair; this is repeated until there is only one element,
which is the result. If ordered is present with the value true, the chosen pair is always the first
two elements. If mask is present, the starting sequence consists of those elements of array for
which mask is true, in array element order. If the sequence is empty, the result is identity if
it is present; otherwise, error termination is initiated. If dim is present, the operation is applied
to all rank-one sections that span through dimension dim to produce an array of rank reduced
by one and extents equal to the extents in the other dimensions, or a scalar if the original rank
is one.

5.12 Intrinsic functions image index, lcobound, ucobound, and this image

If a coarray is of a derived type in Fortran 2008, a subobject that is formed by taking a component
is also a coarray but it cannot have cosubscripts. For example, given the declarations

type t

real r

end type

type(t) x[10,*]

x%r is a coarray that cannot have cosubscripts. However, it may be passed as an actual argument
to a procedure where the corresponding dummy argument is a named coarray that can have
cosubscripts.

The intrinsic functions image index, lcobound, ucobound, and this image all have an argument
coarray and are defined in terms of the possible cosubscript values that coarray may have.
They were not intended to be called for a coarray that cannot have cosubscripts, such as s%lower
where s is a coarray. Such calls are now disallowed.

5.13 Intrinsic function coshape 43

5.13 Intrinsic function coshape

The intrinsic function coshape has been added for consistency with lcobound and ucobound.

coshape(coarray[,kind])

coarray is a coarray that is permitted to have subscripts. It may be of any type. If it is
allocatable, it must be allocated.

kind is a scalar integer constant expression.

The result is a rank-one integer array whose size is the corank of coarray. It is of default
kind if kind is not present and of kind kind if it is present. The value of element i is
1+ucobound(coarray,i)-lcobound(coarray,i).

5.14 Intrinsic subroutine random init

Three problems have been found in Fortran 2008 with the use of the random number generator
random number:

1. Some processors always initialize the pseudorandom seed in the same way. Others pur-
posely initialize it randomly.

2. Each image might have its own pseudorandom seed or there might be a single seed and a
single pseudorandom sequence that the images access in turns.

3. Even with separate seeds, all images might or might not initialize the seeds to the same
value.

For Fortran 2018, it was decided to require each image to have its own seed for the sake of
efficiency when the number of images is very large. The intrinsic subroutine random init has
been added to control the initialization of the seed.

random init (repeatable, image distinct)

repeatable is a logical scalar of intent in. If it has the value true, the seed is set to a
processor-dependent value that is the same each time random init is called within a
given execution environment from an image with the same image index in the initial
team. If it has the value false, the seed is set to a processor-dependent, different value
on each call.

image distinct is a logical scalar of intent in. If it has the value true, the seed is set to
a processor-dependent value that is distinct from the value that would be set by a
call on another image to random init with the same argument values. If it has the
value false, the value to which the seed is set does not depend on which image calls
random init.

44 5 FEATURES THAT ADDRESS DEFICIENCIES AND DISCREPANCIES

References to random init, random number, and random seed update the seed on the executing
image only.

5.15 Intrinsic function sign

The arguments to the intrinsic function sign can be of different kind.

5.16 Intrinsic functions extends type of and same type as

Because the dynamic type of a nonpolymorphic pointer is always well defined, nonpolymorphic
pointer arguments to the intrinsic functions extends type of and same type as need not have
defined pointer association status.

5.17 Detecting nonstandard intrinsics

In Fortran 2018, the processor is required to have the capability to detect and report the use of a
nonstandard intrinsic procedure, a nonstandard intrinsic module, and a nonstandard procedure
of a standard intrinsic module.

5.18 Kind of the do variable in implied do

In Fortran 2008, for a do concurrent construct, forall construct, or forall statement, the
implied do index or indices have the scope of the construct or statement and can be declared
there, for example,

do concurrent (integer(long)::i=1:n, j=1:m, i/=j)

forall (integer(long)::idx=100:200) a(idx, idx) = idx**2

but this was not the case for implied do indices in array constructors and data statements. These
are now allowed, for example,

[(a(i,i), integer(long) :: i=1,n)]

data ((a(i,j), integer(long) :: i=1,5,2), j=1,5) /15*0./

In these cases, the type must be integer and applies only to the do indices of the implied do
in which it occurs.

5.19 Locality clauses in do concurrent

The rules on the use of a variable within a do concurrent construct allow the implementation
to execute it concurrently while working with each variable involved being either shared between
all iterations or held in separate local memory for each iteration. Sometimes the implementation
has to allow for situations that the user knows will not occur and performance suffers.

5.20 Control of host association 45

To provide guidance to the implementation, a do concurrent statement may include specifica-
tions that make a variable that appears in the construct have local, local init, or shared

locality in the construct.

A variable with local or local init locality is treated within the construct as being separate
from the variable with the same name outside the construct. In the local case, the initial value
of the variable within the construct is undefined, whereas in the local init case, it takes the
value or pointer association status of the outside variable. In neither case does the value of the
outside variable change at the end of execution of the construct.

A variable with shared locality is treated within the construct as being the same as the variable
with the same name outside the construct.

A variable without local, local init, or shared locality is said to have unspecified locality
and the rules of Fortran 2008 apply to it.

Localities are specified by one or more of the forms

local (variable-name-list)
local init (variable-name-list)
shared (variable-name-list)
default (none)

appearing at the end of a do concurrent statement. Each variable named must be in the scope
of the do concurrent statement, must not be named more than once in the statement, and
must not be the variable that controls the loop execution. The appearance of default (none)

indicates that no variable of the loop has unspecified locality.

A variable with local or local init locality must not be allocatable, a coarray of intent
(in), an assumed-size array, of finalizable type, a nonpointer polymorphic dummy argument,
an optional argument, or a variable that is not permitted to appear in a variable definition
context. The construct variable has all the properties of the outside variable except that it does
not have the bind, intent, protected, save, or value attribute, even if the outside variable
does.

If a variable with shared locality is defined or becomes undefined during any iteration, it must
not be referenced, defined, or become undefined during any other iteration. If it is allocated,
deallocated, nullified, or pointer assigned during an iteration, it must not have its allocation
or association status, dynamic type, array bounds, shape, or a deferred type parameter value
inquired about in any other iteration. A noncontiguous array with shared locality must not be
supplied as an actual argument corresponding to a contiguous intent inout dummy argument.

5.20 Control of host association

The import statement can be used in a contained subprogram or block construct to control host
association. In addition to the old form

import [[::] import-name-list]

46 5 FEATURES THAT ADDRESS DEFICIENCIES AND DISCREPANCIES

it has the new forms

import, only: import-name-list
import, none

import, all

If one import statement in a scoping unit is an import,only statement, they must all be, and
only the entities listed become accessible by host association.

If an import,none statement appears in a scoping unit, no entities are accessible by host as-
sociation and it must be the only import statement in the scoping unit. import,none is not
permitted in the specification part of a submodule except within an interface body.

If an import,all statement appears in a scoping unit, all entities of the host are accessible by
host association and it must be the only import statement in the scoping unit.

Each import-name must be the name of a host entity and must not appear in a context that
makes the host entity inaccessible, such as being declared as a local entity. For import,all no
entity of the host may be inaccessible for this reason. This restriction does not apply to the
simple form of import.

5.21 Connect a file to more than one unit

It can be convenient to connect a file to more than one unit at a time. For example, the two
units might be reading different parts of the same sequential file. While the prohibition against
connecting a file to more than one unit at a time has been removed, there is no requirement on
the processor to provide this functionality. For a given file and action choice, whether or not it
is available is processor dependent.

5.22 Advancing input with size=

The prohibition against size= appearing with advancing input has been removed.

5.23 Extension to the generic statement

The generic statement can be used to declare generic interfaces outside a type definition. The
syntax is similar to that of a generic statement in a type definition. It takes the form:

generic[[,access-spec]::]generic-spec => specific-procedure-list

where access-spec is public or private. It provides a compact way to associate a generic
identifier with a set of procedures and declare whether it is public or private. The functionality
is as for an interface block that does not contain interface bodies, perhaps with a public or
private statement.

5.24 The value attribute for an argument of a defined operation or assignment 47

5.24 The value attribute for an argument of a defined operation or assign-
ment

In Fortran 2008, intent in is required for an argument of a function that specifies a defined
operation and for the second argument of a subroutine that specifies a defined assignment. In
Fortran 2018, the value attribute may be used instead.

5.25 Removal of anomalies regarding pure procedures

Execution of an error stop statement causes the execution to cease as soon as possible on all
images, so there is no need to disallow it in a pure procedure. It is now allowed and gives the
programmer the opportunity to provide an explanation in the stop-code.

The standard procedures in the intrinsic module iso c binding, other than c f pointer, are
now pure.

A dummy argument of a pure function is permitted in a variable definition context if it has the
value attribute.

5.26 Recursive and non-recursive procedures

Procedures, apart from functions whose result is of type character with an asterisk character
length2, are now recursive by default and the keyword non recursive has been added to allow
a procedure to be specified as non-recursive. It can be used wherever recursive can be used.
Using a non-recursive procedure recursively is likely to produce invalid results on a system that
does not detect such use, so it is safer to require the keyword non recursive for the case where
the user is sure that this is all that is wanted.

The restriction against elemental recursion has been removed. It was intended to make elemental
procedures easier to implement and optimise, but recursion has become normal so the restriction
is not needed.

5.27 Simplification of calls of the intrinsic cmplx

In a call of the intrinsic function cmplx with an argument of type complex, the keyword was
needed for the kind argument. This requirement has been removed by regarding it as having
two overloaded forms

cmplx(x[,kind])

cmplx(x[,y,kind])

2An obsolescent feature – such functions cannot be recursive.

48 5 FEATURES THAT ADDRESS DEFICIENCIES AND DISCREPANCIES

5.28 Removal of the restriction on argument dim of many intrinsic functions

The function all had the form

all(mask[,dim])

and a prohibition against the actual argument corresponding to dim being an optional dummy
argument. This restriction was needed because whether dim is present may affect the rank of
the result. It has been made unnecessary by regarding the function as having two overloaded
forms

all(mask)

all(mask,dim)

The same change has been made to any, norm2, parity, and this image. The functions
findloc, iall, iany, iparity, maxloc, maxval, minloc, minval, product and sum already
have this form. In all these cases, the restriction on dim has been removed. Unfortunately, it
remains for the function count because an ambiguity would be introduced by the overloaded
form.

5.29 Kinds of arguments of intrinsic and IEEE procedures

Several of the intrinsic procedures and the IEEE module procedures require that their numerical
or logical arguments be of default kind. This is an unnecessary restriction and has been changed.
The change will make for better consistency. There is no change for character arguments. The
arguments affected are

• Restriction changed to integer with a decimal exponent range of at least four:

date_and_time (., ., ., values)

execute_command_line (., ., ., cmdstat, .)

get_command (., length, status)

get_command_argument (., ., length, status)

get_environment_variable (., ., length, status, .)

• Restriction changed to integer with a decimal exponent range of at least nine:

execute_command_line (., ., exitstat, ., .)

• Restriction removed:

execute_command_line (., wait, ., ., .)

get_command_argument (number, ., ., .)

this_image (., dim)

5.30 Hexadecimal input/output 49

ieee_get_flag (., flag_value)

ieee_get_halting mode (., halting)

ieee_get_underflow_mode (gradual)

ieee_set_flag (., flag_value)

ieee_set_halting_mode (., halting)

ieee_set_underflow_mode (gradual)

5.30 Hexadecimal input/output

A new edit descriptor has been introduced for hexadecimal output of real values. It has the
forms exw.d and exw.dee. Here, w gives the field width or is zero to specify that the processor
should choose it. d gives the number of hexadecimal digits required or may be zero if all digits
are wanted. The exponent is a power of 2, expressed as a decimal integer. Unless the value
is zero, the exponent is such that the leading hexadecimal digit is 1. The hexadecimal point
appears after the leading digit. For exw.d and exw.de0, the exponent part contains the minimum
number of digits needed to represent the exponent; otherwise, the exponent contains e digits.
Table 4 shows some examples.

Table 4: Examples of hexadecimal output.

Internal value Edit descriptor Possible output
1.375 ex0.1 0X1.6P+0

-15.625 ex14.4e3 -0X1.F400P+003

1048580.0 ex0.0 0X1.00004P+20

For input and when the internal value is an IEEE infinity or NaN, the effect is as for fw.d.

5.31 Precision of stat= variables

It is recommended that any stat= variable should have a decimal exponent range of at least
four to ensure that the error code is representable in the variable.

5.32 Deletions

5.32.1 Arithmetic if statement

The arithmetic if statement has been classed as obsolescent since Fortran 90. It is incompatible
with the IEEE floating-point standard ISO/IEC/IEEE 60559:2011 because it does not distin-
guish between the signs of zero. It involves the use of labels, which can hinder optimization and
make code hard to read and maintain. Similar logic can be more clearly encoded using other
conditional statements. It is now deleted.

50 6 ACKNOWLEDGEMENTS

5.32.2 Nonblock do construct

Shared do termination and do termination by a statement other than end do or continue have
been classed as obsolescent since Fortran 90. They offer considerable scope for confusion and
unexpected errors and are now deleted. Note that labelled do statements are still included as
an obsolescent part of the language.

5.33 New obsolescences

5.33.1 common and equivalence

The common and equivalence statements and the block data program unit are now all ob-
solescent. Common blocks are error-prone and have largely been superseded by modules. The
equivalence statement is similarly error-prone. Whilst use of these statements was invaluable
prior to Fortran 90, they are now redundant and can inhibit performance. The block data

program unit exists only to initialize data in common blocks and hence is also redundant.

5.33.2 Labelled do statements

Labelled do statements are now an obsolescent part of the language. They are redundant with
the use of a name for the construct and the use of the cycle statement.

5.33.3 Specific names for standard intrinsic functions

Specific names for intrinsic functions have been redundant since Fortran 90. They are now
obsolescent. All the intrinsics have generic names.

5.33.4 The forall construct and statement

The forall construct and statement were added in the hope of efficient execution, but this has
not happened. They are redundant with the do concurrent construct and the use of pointer
rank remapping. They are now obsolescent.

6 Acknowledgements

I would like to express my thanks to Reinhold Bader, Erik Kruyt, Steve Lionel, Bill Long, David
Muxworthy, Anton Shterenlikht, and Van Snyder for suggesting many improvements.

REFERENCES 51

References

ISO/IEC (2010), ‘International Standard ISO/IEC 1539-1:2010(E) Information technology -
Programming languages - Fortran - Part 1: Base language’, ISO/IEC, Geneva.

ISO/IEC (2012), ‘ISO/IEC TS 29113:2012 Information technology – Further interoperability of
Fortran with C’, ISO/IEC, Geneva.

ISO/IEC (2015), ‘ISO/IEC TS 18508:2015 Information technology – Additional parallel features
in Fortran’, ISO/IEC, Geneva.

ISO/IEC/IEEE (2011), ‘ISO/IEC/IEEE 60559:2011(E) Information technology – Microproces-
sor Systems – Floating-Point arithmetic’, ISO/IEC, Geneva.

Metcalf, M., Reid, J. and Cohen, M. (2011), Modern Fortran Explained, Oxford University Press.

