CRCM5

Katja Winger Centre ESCER, Université du Québec à Montréal

Model: CRCM5 a.k.a. GEMCLIM

- 5th generation of the Canadian Regional Climate Model at UQAM
- based on GEM (General Environmental Multiscale), Environment Canada's numerical weather prediction model
- Dynamics GEM_3.3.3 & Physics_5.0.4 +
- Development at Centre ESCER primarily funded by CFCAS & Ouranos
- operates on massively parallelised computer architecture (such as CLUMEQ)
- supports a number of model configurations within a single system

Global uniform Limited area Global variable

Outline

Rotated grids
Geophysical fields
Model grid "zones"
Model input / Driving data
Model output
Simulations

Aggregation

One grid cell => up to 5 different surface types:

- 1: Soil / Land
- 2: Glaciers
- 3: Water / Ocean
- 4: Marine ice
- 5: Aggregated value
- 6: Lakes

Surface fraction

land-sea mask

lakes

salt water

glaciers & ice sheets

Vegetation fractions

The "Land" surface fraction gets constructed from 23 vegetation fractions

Needleleafs

evergreen needleleaf trees

mixed wood forest 50%

Broadleafs

Crops

crops

irrigated crops

Crops

urban

bare soil / desert

Mountain height

Pole problem

Rotated grid

Rotated grid

Yin-Yang grid (GEM 4)

Qaddouri, A., and V.Lee, 2011

M. Kameyama et al. 2008

Model level types

pilot region / halo blending / merging area (both usually 10 points wide)

Different "zones"

Parallelization

of CRCM5, a grid point model

(there are also global "spectral" models)

MPI

"Message Passing Interface" distributed memory

Partitioning of the domain into tiles Each cpu will execute the model on one tile.

LAM grid partitioned into 4x4 tiles:

MPI

"Message Passing Interface" distributed memory

Courtesy of Vivian Lee

OpenMP in the physics:

Model input

- 3 config files (simulation, input and output configurations)
- Geophysical fields
 (land/sea mask, orography, vegetation type and fraction soil types, etc.)
- Analysis or initial condition file
 Fields needed to initialize soil and atmospheric variables
- Lateral BC's / Driving data / Pilot files (LAM mode only!!!)
 temperature,
 u-wind,
 v-wind,
 humidity (relative, specific or dew point temperature),
 geopotential (if data are on pressure levels),
 clouds (if available)
- Lower BC's (SST & sea ice)
- Atmospheric ozone (AMIP2, 2-D climatology: 61 latitudes and 59 levels)
- Deep soil temperature
- Global average yearly greenhouse gas concentrations (i.e. RCP 4.5, RCP 8.5)

Driving data

```
AnalysisGEM,ECMWF
```

Reanalysis

```
ERA40 / ERA-Interim (ECMWF),
JRA25 (Japan),
NCAR (USA),
```

Model output (GCM / LAM)

```
CRCM5,
CanESM2 (CCCma, Canada),
MPI-ESM-LR/MR (MPI, Germany),
HadGEM2-ES (Hadley Centre, UK),
```

CRCM5 is divided into two parts:

Dynamics

- grid setup
- parallelism (MPI and OpenMP)
- memory allocations
- advection
- horizontal diffusion
- lateral boundary conditions (LAM)

Physics

- radiation
- convection
- condensation
- land surface schemes (CLASS, ISBA, ...), ocean, lakes, glaciers, sea ice
- boundary layer vertical diffusion
- specified surface forcings (when no ocean model)

Model output

- usually we output on the "free" grid
- Output files are divided into files with dynamics resp. physics fields (first character) on model resp. pressure levels (second character)

Example:

```
dm...: dynamics on model levels
dp...: dynamics on pressure levels
pm...: physics on model levels
pp...: physics on pressure levels
```

Archiving

In the archive directory of each simulation you find some (or all) of the following subdirectories:

Samples: Original 2-/3-D model output;

one subdirectory per month containing

dm-, dp-, pm-, pp-files with

1 or more time steps per file (usually 1 file per month)

Diagnostics: Monthly means and variances

one subdirectory per month containing

dm-, dp-, pm-, pp-files for

mean (moyenne) and variance

Timeseries: Station time series

Pilots: Monthly pilot files

Analysis: Analysis initial condition files step (usually 1 per month)

Restarts: Restart files

Listings: Listings from all machines

Jobs: At runtime created jobs/scripts

Listings: Listings from all machines

Dynamic fields...

3-hourly output

... at the surface (dm-files)

TT: 2m temperature [°C]

UU: 10m u-wind component (east-west direction) [knots]

VV: 10m v-wind component (north-south direction) [knots]

UV: 10m wind modulus [knots]

HU: 2m specific humidity [kg/kg]

HR: 2m relative humidity [0-1]

P0 : surface pressure [hPa]

PN: sea level pressure [hPa]

... on pressure levels (dp-files)

TT: air temperature [°C]

UU: u-wind component (east-west direction) [knots]

VV: v-wind component (north-south direction) [knots]

WW: vertical momentum [Pa/s]

HU: specific humidity [kg/kg]

GZ: geopotential [dam]

Physic fields

3-hourly output

- precipitation (total; liquid/solid; convective/large scale) (hourly total precipitation)
- runoff (total; surface; drainage)
- radiation (long/short wave; model top/surface; up/down/net)
- clouds (2-D; liquid/ice water path; int. water vapour)
- snow (depth; density; albedo; temperature; SWE; water in snow pack)
- albedo; glacier temperature (constant glacier fraction)
- skin temperature & humidity
- soil (temperature; liquid & ice water content)
- SST (BC); sea ice (fraction (BC); temperature; thickness)
- lake fields
- daily 2m minimum & maximum temperature
- 10m maximum wind

Variable dictionaries

http://people.sca.uqam.ca/~winger/GEM/Version_3.3.2/GEMCLIM_output.html#Variable_dictionaries

Available simulations

http://cnrcwp.uqam.ca/documents/simulations

Observation Analysis Reanalysys datasets

http://crystal.sca.uqam.ca/wiki/index.php/Obs_ReAnalysis