
High Performance Computing High Performance Computing
for parallel systemsfor parallel systems

(051)(051)

Michel Valin, Luc Corbeil

Environnement Canada

2006/11/27 http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/

OutlineOutline

● Introduction

● Basics of parallel Computing

● Shared memory parallelism

● Threads (high level, i.e. subroutine level)
● OpenMP (low level, i.e. loop level)

● Distributed memory parallelism

● MPI (basic)
● Toolkit (higher level operations)

http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/

Outline (contd)Outline (contd)

● Threads (basic concepts)

● OpenMP (basic concepts)

● MPI

● basic concepts

● Usage at CMC (compile, load, execute)

● RPN_COMM toolkit

● Basic concepts

● Usage at CMC (compile, load, execute)

● Try your luck !!

http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/

Basics of Parallel ComputingBasics of Parallel Computing

● Why parallel computing ?

● Limits of a single processor

● Speed

● Real estate

● Workaround : parallelism

● Taxonomy of parallel computing

● Hardware

● Software

● Memory

Why parallel computing ?Why parallel computing ?

● You like new challenges

● It exists therefore it must be used

● The program will be real complicated, your job is secure

● It looks better in your resume

●

● You tried using only one processor and it still was not
fast enough in real time. The guru helped you optimize it
to the hilt and it still was not fast enough.

Single processor limitationsSingle processor limitations

● Processor clock speed is limited

● Physical size of processor limits speed because signal speed
cannot exceed speed of light

● Single processor speed is limited by integrated circuits feature
size (propagation delays and thermal problems)

● Memory performance is limited (especially latency)

● The amount of logic on a processor chip is limited by
real estate considerations (die size / transistor size)

Workaround : parallel computingWorkaround : parallel computing

● Increase parallelism within processor (multi operand
functional units like vector units)

● Increase parallelism on chip (multiple processor cores
on chip)

● Multi processor chip computers

● Multi computer systems using a communication network
(latency and bandwidth considerations)

Types of Parallel ComputingTypes of Parallel Computing
hardware wisehardware wise

● Flynn's taxonomy (hardware oriented)

● SISD (Single Instruction Single Data)

● SIMD (Single Instruction Multiple Data)

● MISD (Multiple Instruction Single Data)

● MIMD (Multiple Instruction Multiple Data)

Types of Parallel ComputingTypes of Parallel Computing
hardware wisehardware wise

SISDSISD

● SISD is an acronym for Single Instruction stream over a
Single Data stream. It is a computing term referring to
an architecture in which a single processor executes a
single instruction stream, to operate on data stored in a
single memory. Corresponds to the von Neumann archi-
tecture.

Types of Parallel ComputingTypes of Parallel Computing
hardware wisehardware wise

SIMDSIMD

● SIMD (Single Instruction, Multiple Data) is a set of op-
erations for efficiently handling large quantities of data
in parallel. The first use of SIMD instructions was in
vector supercomputers and was especially popularized
by Cray in the 1970s.

● More recently, small-scale (64 or 128 bits) SIMD has
become popular on general-purpose CPUs. SIMD in-
structions can be found to one degree or another on most
CPUs, including the PowerPC's AltiVec, Intel's MMX,
SSE, SSE2 and SSE3, AMD's 3DNow!. The instruction
sets generally include a full set of vector instructions,
including multiply, shuffle and invert.

Types of Parallel ComputingTypes of Parallel Computing
hardware wisehardware wise

MISDMISD
● Multiple Instruction Single Data (MISD) is a type of parallel

computing architecture where many functional units perform dif-
ferent operations on the same data. Pipeline architectures (IBM
CELL) belong to this type, though a purist might say that the data
is different after processing by each stage in the pipeline. Not
many instantiations of this architecture exist, as MIMD and
SIMD are often more appropriate for common data parallel tech-
niques. Specifically, they allow better scaling and use of computa-
tional resources than MISD does.

● Perhaps the only known practical application of MISD is for fault
detection through redundant computation. Devices that need to
achieve extremely high levels of reliability may implement two or
more separate computational processes and check the results for
consistency to ensure that all components are working correctly.

Types of Parallel ComputingTypes of Parallel Computing
hardware wisehardware wise

MIMDMIMD

● Multiple Instruction Multiple Data (MIMD) is a type of
parallel computing architecture where many functional
units perform different operations on different data. Ex-
amples would be a multiprocessor computer, or a net-
work of workstations.

Types of Parallel computingTypes of Parallel computing
software wisesoftware wise

● A programmer's taxonomy

● Data-parallel : Same operation, different data

● SPMD : Single Program Multiple Data

● Same program, different data
● MPMD : Multiple Program Multiple Data

● Different programs, different data
● (MPMD can be coerced to SPMD)

Types of parallel computingTypes of parallel computing
memory wisememory wise

● The memory model

● SMP Shared Memory Parallelism

● One processor can “ peek into ” another processor's
memory

● Cray X-MP, single node NEC SX-3/4/5/6, IBM pSeries
● DMP Distributed Memory Parallelism

● Processors exchange “ messages ”
● Cray T3D, IBM SP, ES-40, ASCI machines

SISDSISD

● Scalar processors

● 1 CPU

● Bendix G20

● IBM 360

● CDC 7600

● CRAY 1 / NEC SX / Fujitsu VPP scalar instructions

● Personal computer (not too recent !!)

● IBM Power 4/5 series processors

SIMDSIMD

● Parallelism with single control

● Several functional units

● One control unit

● Examples:

● Illiac IV

● CRAY 1 (and other single CPU vector processors)

● Thinking machines CM-2

● Intel SSE

● Altivec instruction set (PowerPC)

MIMDMIMD

● Free running parallelism

● Several INDEPENDENT control units

● Each with several functional units

● Examples:

● CRAY X-MP

● NEC SX-3/4/5/6 (one node)

● SGI Challenge/Origin

● HP K200/K400 series

● SMT (Simultaneous Multi Threading)(Intel , IBM Power)

SPMDSPMD

● ONE program

● SEVERAL sets of data

● Shared memory

● Threads
● Multitasking (thread oriented)
● OpenMP (loop oriented) (also known as Microtasking)

● Distributed memory

● MPI (process oriented)
● PVM (process oriented)

MPMDMPMD

● SEVERAL programs (processes)

● SEVERAL sets of data

● Distributed memory

● MPI [+OpenMP]
● PVM [+OpenMP]

● Can be coerced to SPMD if necessary in the case of a par-
allel application (a name space merge operation must be
performed in this case)

● Trivial case: multiprogramming environment on a multi-user
computer system (this cannot be coerced to SPMD !!)

SMPSMP
Shared Memory ParallelismShared Memory Parallelism

● Easier programming paradigm

● SPMD or MPMD

● Main points to pay attention to

● Load splitting

● Load balancing

● Limitations

● Amdahl's law (single threaded portion)

● Memory bandwidth (shared memory access path)

● Multithreading on a multi-cpu machine is a classical case

SMPSMP
Shared Memory ParallelismShared Memory Parallelism

PE 1
PE 3 PE 4

PE 2

PE=processing element

SMP architecturesSMP architectures

Bus topology

Cpu

Cpu

Cpu

Cpu Cpu

Cpu

Cpu

Cpu

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Network / crossbar

UUniformMMemoryAAccess

SMP architectures (contd)SMP architectures (contd)

NNonUUniformMMemoryAAccess

Routing memory network

C

C M

M

R

C

CM

M

R
C

C M

M

R

C

C M

M

R

C

CM

M

R

C

CM

M

R

DMPDMP
Distributed Memory ParallelismDistributed Memory Parallelism

● More difficult but more powerful programming paradigm

● SPMD or MPMD

● Main points to pay attention to

● Load splitting

● Load balancing

● Domain decomposition

● Limitations

● Amdahl's law (duplicated execution or non parallel)

● Communication bandwidth and latency

DMPDMP
Distributed Memory ParallelismDistributed Memory Parallelism

PE 1 PE 2

PE 3 PE 4

PE=processing element

Distributed memory architectureDistributed memory architecture

Lattice (2D/3D grid / torus)
 (CRAY T3, XT3)

Node

Node

Node Node

Node

Node Node

Node

Node

Distributed memory architectureDistributed memory architecture

Network (InfiniBand, Quadrics, IXS,
Scalable Coherent Interconnect,...)

Node Node Node

Node Node Node

High speed interconnect (network / crossbar)

.

.

Distributed memory architectureDistributed memory architecture

Network

Node Node Node

Node Node Node

Ethernet (10 / 100 / 1000 Mhz)

.

.

SummarySummary

Global address space

Local address spaces

Network controllers

NUMA controllers

Single OS image

Multiple OS images

Amdahl's law for parallel processingAmdahl's law for parallel processing

● Given an amount of work W = Ws + Wp

● Ws = serial work (cannot be divided)

● Wp = parallel work (can be divided)

● If R is the processing speed

● The execution time will be

● T1cpu = Ws/R + Wp/R

● Tncpu = Ws/R + Wp/(n * R)

CorollaryCorollary
● The speedup factor will be

● S = T1cpu / Tncpu

● S = W / (Ws + Wp/n)

● Efficiency = S / ncpu

● If ncpu = 10 and Ws/W = .1 (9% serial work)

● S = 1 / (.1 + .9/10) = 5.26 (efficiency = 52.6% BOF !!)

● If ncpu = 100 and Ws/W = .1

● S = 1 / (.1 + .9/100) = 9.17 (efficiency = 9.17% YUK !!!)

The bottom line The bottom line

● The speedup factor is influenced very much by the residual
serial (non parallelizable) work. As the number of proces-
sors grows, so does the damage caused by non paralleliz-
able work.

Distributed memory supercomputersDistributed memory supercomputers

● Scalar uniprocessors

● CRAY T3D/T3E

● Scalar Multiprocessors

● IBM SP family (pSeries)

● Vector uniprocessors

● FUJITSU VPP-5000

● (HITACHI SR-8000)

● Vector multiprocessors

● NEC SX-4/5/6/7

● CRAY X1

Shared memory parallelismShared memory parallelism

● Threads
● Basics

● Examples

● OpenMP
● Basics

● Examples

Threads (multitasking)Threads (multitasking)

● Threads are light weight processes, oriented to-
wards large to very large granularity, that share a
common memory space.

● Basic functionality (subroutine calls)
● Start a thread (usually a high level subroutine)

● Wait for thread termination

● Terminate thread forcibly

● Manage events

● Manage locks

● POSIX threads have a C API, but a FORTRAN one
is relatively easy to code

ThreadsThreads

● What are threads?

● A thread is a sequence of instructions to be executed
within a program. Normal UNIX processes consist of a
single thread of execution that starts in main(). In other
words, each line of your code is executed in turn, ex-
actly one line at a time. Before threads, the normal way
to achieve multiple instruction sequences (ie, doing sev-
eral things at once, in parallel) was to use the fork() and
exec() system calls to create several processes -- each
being a single thread of execution.

ThreadsThreads
http://www.llnl.gov/computing/tutorials/pthreads/http://www.llnl.gov/computing/tutorials/pthreads/

IF

And IF

THEN

is OK

is OK

ThreadsThreads

 Time Master Thread
 | |
 | | create workers with pthread_create()
 | |
 | // \\ workers start up
 \ / /| |\
 | | | | |
 | | | | | workers do their jobs
 | | | | |
 | \| |/
 | \\ // workers terminate
 | |
 | | join workers with pthread_join()
 \ / |
 | Master Thread

Threads (memory layout)Threads (memory layout)
http://www.llnl.gov/computing/tutorials/pthreads/http://www.llnl.gov/computing/tutorials/pthreads/

Threads (memory layout)Threads (memory layout)
http://www.llnl.gov/computing/tutorials/pthreads/http://www.llnl.gov/computing/tutorials/pthreads/

Threads (memory layout)Threads (memory layout)

+---+
| Process |
| |
| +-------+ +-------------+ +-------------+ +-------------+ |
	Files		Thread		Thread		Thread					
+-------+	+-----------+		+-----------+		+-----------+							
		Registers				Registers				Registers		
	+-----------+		+-----------+		+-----------+							
..												
.						.						
. Memory						.						
.	+---------+		+---------+		+---------+	.						
. +--------+		Stack				Stack				Stack		.
.	Heap											
. +--------+												.
.												.
. +--------+												.
.	Data											
. +--------+												.
.												.
. +--------+												.
.	Code		+---------+		+---------+		+---------+	.				
. +--------+ +-------------+ +-------------+ +-------------+ .												
. .												
..												
+---+

ThreadsThreads
http://www.llnl.gov/computing/tutorials/pthreads/http://www.llnl.gov/computing/tutorials/pthreads/

Threads (basic C functions)Threads (basic C functions)
man pthreads for more informationman pthreads for more information

● pthread_create (thread,attr,start_routine,arg)

● pthread_join (threadid,status)

● pthread_self ()

● pthread_mutex_init (mutex,attr)

● pthread_mutex_lock (mutex)

● pthread_mutex_unlock (mutex)

● pthread_cond_init (cond,attr)

● pthread_cond_broadcast (cond)

● pthread_cond_wait (cond,mutex)

ThreadsThreads
http://www.llnl.gov/computing/tutorials/pthreads/http://www.llnl.gov/computing/tutorials/pthreads/

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
 printf("\n%d: Hello World!\n", threadid);
 pthread_exit(NULL);
}

int main()
{
 pthread_t threads[NUM_THREADS];
 int rc, t;
 for(t=0;t < NUM_THREADS;t++){
 printf("Creating thread %d\n", t);
 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
 if (rc){
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }
 }
 pthread_exit(NULL);
}

FORTRAN Thread functionsFORTRAN Thread functions
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/THREADShttp://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/THREADS

● INTEGER*8 INTEGER ANY_TYPE

● thread_id = CREATE_THREAD(function,arg)

● status = JOIN_THREAD(thread_id)

● thread_id = ID_THREAD()

● status = CREATE_LOCK(lock)

● status = ACQUIRE_LOCK(lock)

● status = RELEASE_LOCK(lock)

● status = CREATE_EVENT(event)

● status = POST_EVENT(event,value)

● value = CHECK_EVENT(event)

FORTRAN Thread functionsFORTRAN Thread functions
Line 1
Line 2

Line n

Line n-1

For each line in array :
 1) perform some operations on line that are independent
 of other lines
 2) perform some operations that need the results from
 the previous line

FORTRAN Thread functionsFORTRAN Thread functions
Line 1

Line 2

Line n

Line n-1

T=09
T=10
T=11

T=70

T=71

FORTRAN Thread exampleFORTRAN Thread example

 program thread_demo
 include 'demo_f90_threads.h'
 integer *8 liste(10)
 real array(10)
 pointer(pvar,var)
 integer id(10),create_thread
 external proxy

 icur=0 ! reset starting point counter
 ntodo=50 ! 50 rows "to do"
 do i=1,50 ! create locks and eventsdo i=1,50 ! create locks and events
 irows(i)=0irows(i)=0
 call call create_lockcreate_lock(locks(i))(locks(i))
 call call create_eventcreate_event(iready(i))(iready(i))
 enddoenddo

 do i=1,5 ! start worker threadsdo i=1,5 ! start worker threads
 array(i)=iarray(i)=i
 write(6,*)'starting thread',iwrite(6,*)'starting thread',i
 call flush(6)call flush(6)
 id(i)=id(i)=create_threadcreate_thread(proxy,array(i))(proxy,array(i))
 write(6,*)'START OF THREAD, ID=',id(i)write(6,*)'START OF THREAD, ID=',id(i)
 call flush(6)call flush(6)
 enddoenddo
 write(6,*)'THREADS CREATED'write(6,*)'THREADS CREATED'
 call flush(6)call flush(6)
 call proxy(0.0) ! main thread

 write(6,*)'done processing, joining'
 call flush(6)

 do i=1,5 ! wait for worker threads to terminatedo i=1,5 ! wait for worker threads to terminate
 call call join_threadjoin_thread(id(i))(id(i))
 enddoenddo

 print *,'icur=',icur,' ntodo=',ntodo
 stop
 end

FORTRAN Thread exampleFORTRAN Thread example
 subroutine proxy(element) ! row processing code
 real element
 include 'demo_f90_threads.h'
 integer icurl,ntodol
 external do_something
 integer do_something

 print *,'start of thread ',id_thread(),' arg=',elementprint *,'start of thread ',id_thread(),' arg=',element
100 continue

 call acquire_lock(locks(1)) ! increment global index icur, copy into local indexcall acquire_lock(locks(1)) ! increment global index icur, copy into local index
 icur=icur+1
 icurl=icur
 call release_lock(locks(1))call release_lock(locks(1))
 if(icurl.gt.50)goto 200 ! no work left, return

 print *,'Processing row ',icurl

 isum=0isum=0
 do ii=icurl,50 ! check that nobody went beyond current positiondo ii=icurl,50 ! check that nobody went beyond current position
 isum=isum+irows(ii)isum=isum+irows(ii)
 enddoenddo
 if(isum .ne.0) print *,'READY ??!!' ! this should NEVER happenif(isum .ne.0) print *,'READY ??!!' ! this should NEVER happen

FORTRAN Thread exampleFORTRAN Thread example
 isum=1000000 ! DO SOME "PRE WORK" on row icurl
 do i=1,1000000
 isum=do_something(isum)
 enddo

 if(icurl .gt. 1) then ! wait for row icurl-1 to be "ready"if(icurl .gt. 1) then ! wait for row icurl-1 to be "ready"
 print *,'Waiting for row ',icurl-1print *,'Waiting for row ',icurl-1
 call wait_event(iready(icurl-1),1)call wait_event(iready(icurl-1),1)
 endifendif

 isum=800000 ! DO SOME "POST WORK" on row icurl
 do i=1,10000
 isum=do_something(isum)
 enddo
 irows(icurl)=1 ! post row icurl as being "ready"irows(icurl)=1 ! post row icurl as being "ready"
 if(icurl .le. 50) call post_event(iready(icurl),1)if(icurl .le. 50) call post_event(iready(icurl),1)
 print *,'row ',icurl,' is ready'print *,'row ',icurl,' is ready'

 call acquire_lock(locks(2)) call acquire_lock(locks(2)) ! decrement global "to do" counter
 ntodo=ntodo-1
 ntodol=ntodo
 call release_lock(locks(2))call release_lock(locks(2))
 if(ntodol .gt. 0) goto 100 ! no work left, return
200 continue
 return

OpenMP (microtasking / autotasking)OpenMP (microtasking / autotasking)
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/OpenMPhttp://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/OpenMP

● The OpenMP application programming interface
(API) supports multi-platform shared memory mul-
tiprocessing programming in C/C++ and Fortran on
many architectures, including Unix and Microsoft
Windows platforms. It consists of a set of compiler
directives, library routines, and environment vari-
ables that influence run-time behavior.

● The core elements of OpenMP are the constructs
for thread creation, work load distribution (work
sharing), data environment management, thread
synchronization.

OpenMP (microtasking / autotasking)OpenMP (microtasking / autotasking)

● OpenMP works at the loop level (small granularity
often at the loop level), multiple CPUs execute the
same code in a shared memory space

● Basic features (FORTRAN “comments”)
● Begin of parallel region

● End of parallel region

● Manage critical regions (one CPU at a time)

● Manage serial regions (executed only once)

● Variable scope management (shared vs private)

OpenMPOpenMP

OpenMP is an explicit (not automatic) programming model, offering
the programmer full control over parallelization. Compilers may offer
options to generate directives automagically.

OpenMP uses the fork-join model of parallel execution:

OpenMPOpenMP

PROGRAM HELLO

 INTEGER VAR1, VAR2, VAR3

 Serial code

 Beginning of parallel section. Fork a team of threads.
 Specify variable scoping

!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)

 Parallel section executed by all threads
 .
 .

 All threads join master thread and disband

!$OMP END PARALLEL

Resume serial code

 END

OpenMPOpenMP

OpenMPOpenMP

PROGRAM VEC_ADD_DO

 INTEGER N, CHUNKSIZE, CHUNK, I
 PARAMETER (N=1000)
 PARAMETER (CHUNKSIZE=100)
 REAL A(N), B(N), C(N)

! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO
 CHUNK = CHUNKSIZE

!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)

!$OMP DO SCHEDULE(DYNAMIC,CHUNK)
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END DO NOWAIT

!$OMP END PARALLEL

END

OpenMPOpenMP

PROGRAM VEC_ADD_SECTIONS
 INTEGER N, I
 PARAMETER (N=1000)
 REAL A(N), B(N), C(N)

! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO

!$OMP PARALLEL SHARED(A,B,C), PRIVATE(I)

!$OMP SECTIONS

!$OMP SECTION
 DO I = 1, N/2
 C(I) = A(I) + B(I)
 ENDDO
!$OMP SECTION
 DO I = 1+N/2, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END SECTIONS NOWAIT
!$OMP END PARALLEL

END

OpenMPOpenMP

PROGRAM CRITICAL

 INTEGER X
 X = 0

!$OMP PARALLEL SHARED(X)

!$OMP CRITICAL
 X = X + 1
!$OMP END CRITICAL

!$OMP END PARALLEL

END

PROGRAM CRITICAL

 INTEGER X

!$OMP PARALLEL SHARED(X)

!$OMP MASTER
 X = 0
!$OMP END MASTER
!$OMP BARRIER

!$OMP CRITICAL
 X = X + 1
!$OMP END CRITICAL

!$OMP END PARALLEL

END

PROGRAM CRITICAL

 INTEGER X

!$OMP PARALLEL SHARED(X)

!$OMP SINGLE
 X = 0
!$OMP END SINGLE
!$OMP BARRIER

!$OMP CRITICAL
 X = X + 1
!$OMP END CRITICAL

!$OMP END PARALLEL

END

 OpenMP ProsOpenMP Pros
(cheap)(cheap)

● Simple: no need to deal with message passing as MPI does

● Data layout and decomposition is handled automatically by
directives.

● Incremental parallelism: can work on one portion of the pro-
gram at one time, no dramatic change to code is needed.

● Unified code for both serial and parallel applications:
OpenMP constructs are treated as comments when sequential
compilers are used. (possible need for some function stub-
bing)

● Original (serial) code statements needs not, in general, to be
modified when parallelized with OpenMP. This reduces the
chance of inadvertently introducing bugs.

 OpenMP ConsOpenMP Cons
(you get what you pay for)(you get what you pay for)

● Currently only runs efficiently on shared-memory mul-
tiprocessor platforms

● Requires a compiler that supports OpenMP.

● Low parallel efficiency: relies more on parallelizable
loops, potentially leaving out a relatively high percent-
age of a non-loop code in sequential part.

General remarksGeneral remarks

● Shared memory parallelism at the loop level can often
be implemented after the fact if what is desired is a
moderate level of parallelism (and speedup)

● It can be also done to a lesser extent at the thread level
in some cases but reentrancy, data scope (thread local vs
global) and race conditions can be a problem.

(you can lookup reentrant or thread-safe on wikipedia)

Distributed memory parallelismDistributed memory parallelism

● Basic concepts

● Communication costs

● Communication through messages

● Cooperative
● One sided

● Data decomposition

● High level data movement

● MPI

● RPN_COMM

General remarksGeneral remarks

● Distributed memory parallelism does not happen, it must
be DESIGNED.

● One does not parallelize a code, the code must be rebuilt
(and often redesigned) taking into account the con-
straints imposed upon the dataflow by message passing.
Array dimensioning and loop indexing are likely to be
VERY HEAVVILY IMPACTED.

● One may get lucky and HPF or an automatic paralleliz-
ing compiler will solve the problem [if one believes in
(a) miracles, (b) Santa Claus, (c) the tooth fairy or
(d) all of above].

MessagesMessages

● If memory is not shared between processors (distributed),
the only way to communicate information from one part of
the system to another is through the use of messages. A
message is a data packet sent from one processor (sender)
to another processor (receiver) in an organized fashion (just
like the post office)

● Communications through messages can be

● Cooperative send / receive (democratic)

● One sided get / put (autocratic)

Communication costsCommunication costs

Time

Message length

S
ta

rt
up

Tw = cost / word

Communication costs examplesCommunication costs examples

● Machine latency data transfer rate
 (microseconds) (MegaBytes/second)

● IBM Power 4 25 290

● IBM Power 5 5 1700

● Intel Paragon 120 60

● CM-5 82 8

● Ncube-2 150 2

● GiGEthernet 40-120 100

● Infiniband 5-30 160-900

● NEC SX6 5 10 000

Cooperative communicationsCooperative communications

● The exchange of data is handled through message passing

● Data is EXPLICITELY sent and received

● Advantage: any change in receiver's memory is made with
receiver's participation, all participants know what is going
on and when it is going on.

Process A Process B

Send (data)

Receive (data)

One sided communicationsOne sided communications

● Remote memory reads and writes (hardware assisted)

● Pros: data can be accessed without waiting for other
process

● Cons: synchronization may not be that easy

Process A Process B

PUT (data)

GET (data)

(memory)

(memory)

DecompositionDecomposition

● Basic checklist

● Functional decomposition

● Domain decomposition
● Global coordinates (points)

● Local coordinates (points and processors)

● 1 D decomposition

● 2 D decomposition

Basic partitioning checklistBasic partitioning checklist

● Does your partitioning define many more tasks than there
are cpus in target computer ? If not, little flexibility.

● Does your partitioning avoid redundant computations and
storage ? If not, algorithm may not scale well.

● Are tasks of comparable size ? If not, load balance suffers.

● Does number of tasks scale with problem size ? If not, it may
be difficult to use more processors for larger problem

● Have you identified alternative partitioning ? It is best to
consider alternatives at beginning. Look at domain and func-
tional decomposition (or a mix).

Functional decompositionFunctional decomposition

Atmospheric model

Hydrology
model

Land surface model

Ocean
model

Domain decompositionDomain decomposition

● Global (problem) topology

● Each process (PE) only has a piece of the problem that repre-
sents a certain portion of the problem subscripting space

● Local topology

● All processes use local subscripts to refer to their own data

● Usually all processes use the same subscripting space for their
own piece of the problem (storage / operation dimensions may
vary as all pieces are not necessarily the same size)

● Processes also need to know their position in the global prob-
lem (processor topology)

N.B. A process (PE) may use multiple threads.

1D domain decomposition 1D domain decomposition

Gni

Gnj

1

1 Lni 1 Lni

1

1

Gnj

Lni Lni+1

Global indexing

local indexing

Pe (1)Pe (0)

N

S

W E

PE = process

2D domain decomposition 2D domain decomposition
Gni

Lnj

1

Lnj

1

1 Lni 1 Lni

1

1

Gnj

Lni Lni+1

Lnj

Lnj+1

global indexing

local indexingPe (0,0)

Pe (1,0) Pe (1,1)

Pe (1,0)

N

S

W E

PE = process

High level operationsHigh level operations

● Halo exchange
● What is a halo ?

● Why and when is it necessary to exchange a halo ?

● Data transpose
● What is a data transpose ?

● Why and when is it necessary to transpose data ?

● Reduction operations

2D array layout with halos2D array layout with halos

H
al

o
y

Halo x Halo x

H
al

o
y

H
al

o
y

Halo x Halo x

H
al

o
y

Mini Maxi
1 Lni

1

Lnj

Minj

Maxj

Inner halo

Outer halo

Private data

N

S

W E

Halo why and when ?Halo why and when ?

● Sometimes it is necessary to have access to
neighboring data in order to perform local computa-
tions

● Differential operators
dfdx(i) = (f(i+1) - f(i-1)) / (x(i+1)-x(i-1))

● Filters
new(i) = .25 * (old(i-1) + old(i+1) + 2*old(i))

● In general any stencil type discrete operator

● Necessary halo width depends on the operator

2D smoothing2D smoothing

4 1
1

1
1

Pass 1

Pass 2

Pass 3

4 1
1

1
1

4 1
1

1
1

4 1
1

1
1

Halo width vs number of exchanges tradeoff

Data transposeData transpose

● A data transpose is a domain data decomposition change
performed during the course of execution

● Suppose that we started with a 1D data decomposition
(the I axis is distributed over processors)

● We now need to perform a 2D FFT over the data

● Along J, no problem

● Along I, OOPS !!

● Need to change data decomposition to bring I axis in
processor for FFT along I

2 D FFT (step 1)2 D FFT (step 1)

J

I

Pe(0) Pe(1) Pe(2) 1 D FFT
along J

N

S

W E

PE = process

2 D FFT (step 2)2 D FFT (step 2)

J

I

Pe (0)

Pe (1)

Pe (2)

Transpose data to distribute it over J axis

N

S

W E

2 D FFT (step 3)2 D FFT (step 3)

J

I

Pe (0)

Pe (1)

Pe (2)

1 D FFT along I

N

S

W E

2 D FFT (step 4)2 D FFT (step 4)

J

I

Pe(0) Pe(1) Pe(2)

Restore original data decomposition over I axis

N

S

W E

Reduction operationsReduction operations

● Global reduction operations are sometimes needed

● decomposition invariant

● Min / max of entire problem

● Non decomposition invariant

● Global dot product
● Sum / average / standard deviation of global field

● It is a 2 or 3 step process

● Perform operation (computation) on local data

● Use collective operator to perform a network reduction

● Broadcast results to all processors if necessary

Reduction operationsReduction operations

● What makes a reduction non decomposition invariant ?

Ex: (A + B) + C is not equal to A + (B + C)

● Can it be made decomposition invariant ?

YES, but there is a butcher's bill

Reduction operation exampleReduction operation example
(sum along the I axis)(sum along the I axis)

I

J

1
1 lni 1 lni

nj

Pe 0 Pe Np_x

Method 1 (fast, non decomposition independent)

on each PE

localsum(:)=0
DO I=1,lni
 localsum(:)=localsum(:)+array(i,:)
ENDDO

MPI_all_reduce '+' localsum

Method 2 (slow, decomposition independent)

on PE 0
 localsum(:)=0
on PE n
 get localsum from PE n-1

on PE n
 DO I=1,lni
 localsum(:)=localsum(:)+array(i,:)
 ENDDO
 send localsum to PE n+1 (except for PE Np_x)

on PE Np_x
 MPI_broadcast localsum

. . .

1 Gni

Method 2 keeps the summation order the same for any number of Pes at the expense of the parallelism

What is MPI ?What is MPI ?

● A message passing library specification
● Message passing model

● Not a compiler specification

● Not a specific product

● Bindings defined for FORTRAN, C, C++

● For parallel computers, clusters, heterogeneous
networks

● Full featured (but can be used in simple fashion)

What is MPI ? (contd)What is MPI ? (contd)

● Two part standard, MPI-1 and MPI-2

● Designed to permit the development of parallel
software libraries

● Designed to provide access to advanced parallel
hardware

● End users

● Library writers

● Tool developers

Features of MPIFeatures of MPI

● General

● Communicators combine context and group for security

● Thread safety

● Point to point communications

● Structured buffers and derived datatypes

● Normal (blocking and non blocking) synchronous, ready (to allow for
special fast protocols), buffered

● Collective communications

● Built-in or user defined

● Subgroups defined directly or by topology

● Large number of data movement routines

Features of MPI (contd)Features of MPI (contd)

● Application oriented process topologies

● Built-in support for groups and graphs

● Profiling

● Hooks to allow users to intercept MPI calls and install their own tools

● environmental

● Inquiry functions

● Error control

Features not in MPI-1Features not in MPI-1

● Non message-passing concepts not included:

● Process management

● Remote memory transfers (single sided communications)

● Active messages

● Threads

● Virtual shared memory

● MPI does not address these issues but tries to remain
compatible (e.g. Thread safety)

● Some of these features are in MPI-2

Is MPI large or small ?Is MPI large or small ?

● Mpi is large. MPI-1 has 128 functions, MPI-2 152

● Extensive functionality requires many functions

● Number of functions not necessarily a measure of complexity

● MPI is small (6 functions)

● Many programs can be implemented with 6 basic functions

● MPI is just right

● Functionality can be accessed when needed

● No need to master all of MPI to use it

Where to use MPI ?Where to use MPI ?

● You need a PORTABLE parallel program

● You are writing a parallel library (toolkit)

● You have irregular or dynamic data relationships that do not
fit a data parallel model (e.g. HPF)

● You care about PERFORMANCE

● Communications tend to degrade performance, lots of communica-
tions mean lots of calls to MPI and make codes uglier. Beauty of the
code can become a visual indicator of performance.

Where not to use MPI ?Where not to use MPI ?

● You can use HPF or a parallel FORTRAN 90 (one always
hopes !!)

● OpenMP with a SMALL number of processors will be suffi-
cient

● You can't care less about parallelism because problem is so
small or speed is really not an issue

● You can directly use libraries (that may be written using
MPI)

● Simple threading in a slightly concurrent environment is
enough to save the day

MPIMPI

● Writing MPI programs

● Compiling and linking

● Running MPI programs

● Examples can be found at :

http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/

The FORTRAN 6 packThe FORTRAN 6 pack

● Include 'mpif.h'

● Call MPI_INIT(ierr)

● Call MPI_FINALIZE(ierr)

● Call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr)

● Call MPI_COMM_SIZE(MPI_COMM_WORLD,size,ierr)

● Call MPI_SEND(buffer,count,datatype,destination,tag,comm,ierr)

● Call MPI_RECV(buffer,count,datatype,source,tag,comm,status,ierr)

Basic MPI programBasic MPI program
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/basic.fhttp://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/basic.f

 program hello
 implicit none
 include 'mpif.h'

 integer noprocs, nid, error

 call MPI_Init(error)
 call MPI_Comm_size(MPI_COMM_WORLD, noprocs, error)
 call MPI_Comm_rank(MPI_COMM_WORLD, nid, error)

 write(6,*)'Hello from processor', nid, ' of',noprocs

 call MPI_Finalize(error)

 stop
 end

Basic MPI programBasic MPI program
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/basic.fhttp://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/basic.f

r.mpirun -npex 3 -pgm basic_Linux

 Hello from processor 0 of 3
 Hello from processor 1 of 3
FORTRAN STOP
 Hello from processor 2 of 3
FORTRAN STOP
FORTRAN STOP

Compiling, linking and runningCompiling, linking and running

To build executable :

r.compile -o my_program -src my_program.f -mpi
(mpif90 -o my_program -src my_program.f)

To run executable :

r.mpirun -npex number_of_tasks -pgm my_program

Compiling, linking and runningCompiling, linking and running

basic_$(ARCH):
 r.compile -o basic_$(ARCH) -arch $(ARCH) -src basic.f -mpi
 rm basic.o

run_basic: basic_$(ARCH)
 r.mpirun -npex 3 -pgm basic_$(ARCH)

clean:
 rm -f basic_$(ARCH) basic.o

Makefile excerpt

To build executable and run it on the current platform
make run_basic

Collective operationsCollective operations

Pe 0 Pe 1 Pe 2 Pe 3 Pe 0 Pe 1 Pe 2 Pe 3

A B C D gather A,B,C,D

A B C D allgather A,B,C,D A,B,C,D A,B,C,D A,B,C,D

A,B,C,D scatter A B C D

A,B,C,D E,F,G,H I,J,K,L M,N,O,P alltoall A,E,I,M B,F,J,N C,G,K,O D,H,L,P

A bcast A A A A

Send Send Send Send Recv Recv Recv Recv

● MPI_gather, MPI_allgather

● MPI_scatter, MPI_alltoall

● MPI_bcast

Reduction operationsReduction operations

● MPI operators:

● mpi_sum

● mpi_min, mpi_max

● Other logicals operators

● mpi_reduce, mpi_allreduce

The RPN_COMM toolkitThe RPN_COMM toolkit
((http://web-mrb.cmc.ec.gc.ca/mrb/si/eng/si/libraries/rpncomm/rpn_commhttp://web-mrb.cmc.ec.gc.ca/mrb/si/eng/si/libraries/rpncomm/rpn_comm))

● NO INCLUDE FILE NEEDED (like mpif.h)

● Higher level of abstraction

● Initialization / termination of communications

● Topology determination

● Point to point operations

● Halo exchange
● (Direct message to NSWE neighbor)

● Collective operations

● Transpose
● Gather / distribute
● Data reduction

http://web-mrb.cmc.ec.gc.ca/mrb/si/eng/si/libraries/rpncomm/rpn_comm

The higher level operationsThe higher level operations

● Topology determination (local from global)

● Halo exchange

● Data transpose

● Data distribution
● Collect / distribute

● Broadcast

● Reduction

● Neighbor to neighbor exchanges

DATA distribution (play by play)DATA distribution (play by play)
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.fhttp://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.f

 Program halo
 implicit none

 include 'dimensions.h'

 integer ierr
 integer pelocal,petotal
 external userinit
 integer lni,lnj,mini,maxi,minj,maxj
 integer lnimax,lnjmax,i0,j0,in,jn
 integer lnpex,lnpey
 integer ierr

 real, dimension(:,:), allocatable :: z

 integer gni,gnj
 integer npex,npey
 integer halox,haloy

common /dimensions/gni,gnj,npex,npey,halox,haloy
 namelist /dimensions/gni,gnj,npex,npey,halox,haloy

DATA distribution (contd)DATA distribution (contd)
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.fhttp://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.f

 lnpex=0
 lnpey=0
*
* INITIALIZE RPN_COMM
*
 call rpn_comm_init(userinit,pelocal,petotal,lnpex,lnpey)
*
* BROADCAST run parameters
*
 call rpn_comm_bcast(gni,6,'MPI_INTEGER',0,'GRID',ierr)
*
* determine TOPOLOGY
*
 ierr = rpn_comm_topo(gni,mini,maxi,lni,lnimax,halox,i0,.true.,.false.)
 in=i0+lni-1
 ierr = rpn_comm_topo(gnj,minj,maxj,lnj,lnjmax,haloy,j0,.false.,.false.)
 jn=j0+lnj-1

2D array layout with halos2D array layout with halos

H
al

o
y

Halo x Halo x

H
al

o
y

H
al

o
y

Halo x Halo x

H
al

o
y

Mini Maxi
1 Lni

1

Lnj

Minj

Maxj

Inner halo

Outer halo

Private data

N

S

W E

DATA distribution (contd)DATA distribution (contd)
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.fhttp://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.f

*
* ALLOCATE LOCAL portion of GLOBAL array
*
 allocate (z(mini:maxi,minj:maxj))

 print *, 'PE ',pelocal,' allocated z(',mini,':',maxi,
 $ ',',minj,':',maxj,')',' globalz(',i0,':',in,',',j0,':',jn,')',
 $ ' of (',gni,',',gnj,')'
*
* TERMINATE gracefully
*
 call rpn_comm_finalize(ierr)

stop
end

DATA distributioDATA distribution (contd)n (contd)
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.fhttp://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.f

 subroutine userinit(lnpex,lnpey)
 integer lnpex,lnpey
*
* user initialization routine, called only on PE 0
*
 include 'dimensions.h'
 open(20,form='FORMATTED',file='indata_halo')
 read(20,nml=dimensions)
 write(6,nml=dimensions)
 close(20)
 lnpex=npex
 lnpey=npey
 return
 end

 integer gni,gnj
 integer npex,npey
 integer halox,haloy

common /dimensions/gni,gnj,npex,npey,halox,haloy
 namelist /dimensions/gni,gnj,npex,npey,halox,haloy

DATA distribution (contd)DATA distribution (contd)
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.fhttp://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/HELLO/allocate.f

mpirun -np 6 allocate
 &DIMENSIONS GNI = 37, GNJ = 25, NPEX = 3, NPEY = 2, HALOX = 2, HALOY = 3 /
 Requested topology = 3 by 2
 Domain set for 6 processes
 PE MATRIX :
 2 0 1 2 0
 5 3 4 5 3
 2 0 1 2 0
 5 3 4 5 3
 PE_xtab :
 0 1 2 0 1 2
 PE_ytab :
 0 0 0 1 1 1
 ordinals table
 0 1 2 3 4 5
 PE 0 allocated z(-1 : 15 , -2 : 16) globalz(1 : 13 , 1 : 13) of (1: 37 ,1: 25)
 PE 1 allocated z(-1 : 15 , -2 : 16) globalz(14 : 26 , 1 : 13) of (1: 37 ,1: 25)
 PE 2 allocated z(-1 : 15 , -2 : 16) globalz(27 : 37 , 1 : 13) of (1: 37 ,1: 25)
 PE 3 allocated z(-1 : 15 , -2 : 16) globalz(1 : 13 , 14 : 25) of (1: 37 ,1: 25)
 PE 4 allocated z(-1 : 15 , -2 : 16) globalz(14 : 26 , 14 : 25) of (1: 37 ,1: 25)
 PE 5 allocated z(-1 : 15 , -2 : 16) globalz(27 : 37 , 14 : 25) of (1: 37 ,1: 25)

0 1 2

3 4 5

1 14 27
1

14
13

25

13 26 37
13 13 11

13

12

Halo exchange 051Halo exchange 051

How many neighbor PEs must local PE exchange data with to get
data from the shaded area (outer halo, 8 neighbors)?

Local pe

South

North

EastWest

North West North East

South West South East

Halo exchange 101Halo exchange 101

1) Send East inner halo to East neighbor
2) Get East outer halo from East neighbor
3) Send West inner halo to West neighbor
 4) Get West outer halo from West neighbor

1 Lni

Lni-haloxHalox

Inner halo

Outer halo

1 Lni

Lni-haloxHalox

1 Lni

Lni-haloxHalox

1

2

3

4

Step 1, East-West exchange

Halo exchange 101Halo exchange 101

1) Send North inner halo to North neighbor
2) Get North outer halo from North neighbor
3) Send South inner halo to South neighbor
 4) Get South outer halo from South neighbor

Inner halo (NS)

Outer halo (NS)

Step 2, North-South exchange

1
Haloy

Lnj-haloy
Lnj

1
Haloy

Lnj-haloy
Lnj

1
Haloy

Lnj-haloy
Lnj

1 2

3 4

Inner halo (EW)

Outer halo (EW)

Other RPN_COMM toolsOther RPN_COMM tools

● Equivalent calls to most frequently used MPI routines

● Send, Recv

● Gather, Allgather, Reduce, Allreduce, Alltoall, Barrier

● If you need one, ask for it!

● MPI_[something] => RPN_COMM_[something]

ExampleExample

● To send an array using MPI, you would use:

call mpi_send(array, array_size, mpi_integer, dest, tag,
MPI_COMM_world, ierr)

dest is an absolute PE number

● With RPN_COMM, it becomes:

call rpn_comm_send(array, array_size, ”mpi_integer”, “W”, tag,
”GRID”, ierr)

May be used to target 'N', 'S', 'E', 'W' neighbors without having to
know their PE number

Use of strings instead of MPI_ variablesUse of strings instead of MPI_ variables

● Datatypes:
● mpi_integer => “mpi_integer”
● mpi_real => “mpi_real”
● Same for complex, double, etc...

● Operators
● mpi_sum, max, min, etc...

● Basic communicators
● “GRID” for all the calculation domain
● “EW” for rows
● “NS” for columns

Other RPN_COMM_toolsOther RPN_COMM_tools

● Global collect, global distribute

● RPN_COMM_coll

● Retrieve data in a g_ni*g_nj array

● RPN_COMM_dist:

● Send data in a l_ni*l_nj array

● Global sum

● Using rpn_comm_reduce with mpi_sum is not always a good
idea

● RPN_COMM_globalsum fixes the problem

It's your turn now!It's your turn now!
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/

● John Conway, game of life (1970)
● http://www.math.com/students/wonders/life/life.html

● It starts with an arbitrary initial pattern

● The evolution follows some basic rules

● Your universe can increase/decrease/die!

http://www.math.com/students/wonders/life/life.html

Rules of LifeRules of Life

● Your initial domain is filled with dead and living cells

● Each cell has eight neighbors

● A cell becomes alive if it has exactly three living neighbors

● A cell remains alive if it has two or three living neighbors

● Else, a cell dies or remains dead (loneliness or overcrowd-
ing)

RemarksRemarks

● The results are computed from the state BEFORE the ap-
plication of all rules.

● We use a 49 by 51 grid and suppose that everything out-
side the domain is dead and remains dead

Coding rulesCoding rules
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/LIFE/http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/LIFE/

● mpif.h not recommended (use RPN_COMM instead!)

● Routines game_of_life and show_results available from
examples directory
~armnmfv/public_html/HPC_COURSE
http://iweb.cmc.ec.gc.ca/~armnmfv/HPC_COURSE
~arnmbmk/PAR_WORKSHOP

● Keep track of the population count

● Stop experience if population <= 2 (why?)

● Don't cheat by looking at what your neighbor is doing,
your idea may be good or better!

http://iweb.cmc.ec.gc.ca/~armnmfv/HPC_COURSE

THE PROBLEM CODETHE PROBLEM CODE
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/LIFE/http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/MPI/LIFE/

● [TXT] REFERENCE_output 06-Oct-2006 20:36 2k (what you should get)

● [TXT] RUN_MPI 06-Oct-2006 21:04 1k (RUN_MPI nx ny
 to run with nx by ny topology)

● [TXT] RUN_SINGLE 06-Oct-2006 20:55 1k (run the serial version)

● [TXT] game_of_life.f90 06-Oct-2006 20:36 2k (the board processing and
 display routines)

● [TXT] life-serial.f90 06-Oct-2006 20:36 1k (the serial version)

● [] lifempi2.f90 06-Oct-2006 20:36 4k (an answer)

● [] lifempi2a.f90 06-Oct-2006 20:36 2k (a partial answer 1)

● [] lifempi2b.f90 06-Oct-2006 20:36 1k (a partial answer 2)

● [] lifempi2c.f90 06-Oct-2006 20:36 1k (a partial answer 3)

● [] lifempi2d.f90 06-Oct-2006 20:36 1k (a partial answer 4)

● [TXT] problem_data.cdk90 06-Oct-2006 20:36 1k (a needed module)

(some irrelevant entries omitted)

Single tile program:Single tile program:
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/

((http://web-mrb.cmc.ec.gc.ca/mrb/si/eng/si/libraries/rpncomm/rpn_commhttp://web-mrb.cmc.ec.gc.ca/mrb/si/eng/si/libraries/rpncomm/rpn_comm))

Program life
 implicit none
 integer, parameter :: gni=49, gnj=51, nstep=70, npts=5
 integer board(0:gni+1,0:gnj+1),i
 integer :: xarray(npts) = (/25,25,25,24,26/)
 integer :: yarray(npts) = (/23,24,25,23,24/)
 board=0
 do i=1,npts
 board(xarray(i),yarray(i))=1
 enddo
 call show_results(board,0,gni+1,0,gnj+1,1,gni,1,gnj)
 do i=1,nstep
 call game_of_life(board,0,gni+1,0,gnj+1,1,gni,1,gnj,1)
 enddo
 call show_results(board,0,gni+1,0,gnj+1,1,gni,1,gnj)
 print *,'THE END'
 stop
end Program life

http://web-mrb.cmc.ec.gc.ca/mrb/si/eng/si/libraries/rpncomm/rpn_comm

Single tile program:Single tile program:
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/

subroutine game_of_life(board,imin,imax,jmin,jmax,i0,ni,j0,nj,nstep)
!
! Core subroutine of Conway's Game of Life.
!
 integer imin,imax,jmin,jmax,ni,nj,nstep,i0,j0
 integer board(imin:imax,jmin:jmax)
 integer buf(i0:ni,j0:nj)
 integer i,j,n,sum,indice
 external cute_function
 integer cute_function
!

Single tile program:Single tile program:
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/

!
 do n=1,nstep
 do j=j0,nj
 do i=i0,ni
 sum= board(i-1,j) + board(i+1,j) + &
 board(i-1,j+1) + board(i+1,j+1) + board(i,j+1) + &
 board(i-1,j-1) + board(i+1,j-1) + board(i,j-1)
 if((board(i,j)==0).and.(sum==3)) then
 buf(i,j)=cute_function(1)
 else if ((board(i,j)==1).and.((sum==2).or.(sum==3))) then
 buf(i,j)=cute_function(1)
 else
 buf(i,j)=cute_function(0)
 endif
 enddo

 enddo
 board(i0:ni,J0:nj)=buf(i0:ni,j0:nj)
 enddo

Single tile program:Single tile program:
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/

!
! put zero outside of the domain
!
 board(imin:i0-1,jmin:jmax)=0
 board(ni+1:imax,jmin:jmax)=0
 board(imin:imax,jmin:j0-1)=0
 board(imin:imax,nj+1:jmax)=0

end subroutine game_of_life

Single tile program:Single tile program:
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/

integer function cute_function(input)
 integer input
 real temp
 integer itemp
 integer iter
 itemp=input
 do iter=1,200 ! really lose CPU time
 temp=itemp
 temp=asin(temp*.97)
 if(temp .lt. .4) temp = .05
 if(temp .gt. .5) temp=1.005
 itemp=nint(temp+.01)
 enddo
 if(input .ne. itemp) print *,' ERROR, cute_function is not identity'
 cute_function=itemp
return
end function cute_function

Single tile program:Single tile program:
http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/http://iweb.cmc.ec.gc.ca/~armnmfv/COURS_HPC/SERIAL/LIFE/

subroutine show_results(board,imin,imax,jmin,jmax,i0,ni,j0,nj)
 integer imin,imax,jmin,jmax,ni,nj
 integer board(imin:imax,jmin:jmax)
 integer j
 character*1 out(2)
 out(1)='.'
 out(2)='X'
 write(*,*)
 do j=nj,j0,-1
 write(*,"(50A1)") out(board(i0:ni,j)+1)
! write(*,"(50I1)") board(i0:ni,j)
 enddo
 write(*,*)

20 format('(80I1)')
end subroutine show_results

Suggestion for your codeSuggestion for your code

● Before doing anything else, sketch a plan!

● Try to reduce the number of communications

● Hint: use halos where and when needed (watch out for
global boundary conditions)

Debugging tips Debugging tips
(code does not always works on first try!!)(code does not always works on first try!!)

● Does it work for one PE (process)?

● Compile/execute your code often!

● Does the PE get the right message from the right sender?

● A great, fancy mpi debugger:
if(my_id==checked_pe) write(*,*) the_variables_I_want_to_check

call flush (6)

call rpn_comm_barrier

● Watch for zombie processes (ps -fu username)
(N.B. You are all using the same username)

To make it betterTo make it better

● What could be done to avoid the halo exchange on each
time step?

● Does your population count tracker use the most effi-
cient collective operation?

● Bonus: on an infinite grid, do all patterns stabilize?

To make it betterTo make it better

● What could be done to avoid the halo exchange on each
time step?

● Does your population count tracker use the most effi-
cient collective operation?

● Bonus: on an infinite grid, do all patterns stabilize?

● The answer is no, and a prize was awarded for the proof...

MPI: ConclusionMPI: Conclusion
(expensive, but you get what you pay for)(expensive, but you get what you pay for)

● MPI is great if used correctly

● A software can't be ported easily to MPI if it is not de-
signed for PARALLEL and DISTRIBUTED computa-
tion

● Monitor your jobs!

● ps -fu username, all processes should advance at the same pace

● If on a cluster, try to use similar (preferably identical) machines
(the slowest process will set the overall speed)

THE ENDTHE END

Thank you for your attentionThank you for your attention

have (parallel) funhave (parallel) fun

may the (MPI) force be with youmay the (MPI) force be with you

Michel Valin, Luc CorbeilMichel Valin, Luc Corbeil

Environnement CanadaEnvironnement Canada
Dorval, QuébecDorval, Québec

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	halo
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

